eXplainable Predictive Maintenance

Halmstad University & Inesc Tec & Jagiellonian University & IMT Lille-Douai
Scientific Background

• Integrate explanations into AI solutions in Predictive Maintenance

• PM effectiveness depends less on the accuracy of alarms from AI...
 o than on the relevancy of actions operators perform based on these alarms
 o today, AI does not really support experts in making “smart” maintenance decisions based on the deviations that the black-box model detects

• Repair plan requires complex reasoning and planning processes
 o involving many actors and balancing different priorities
 o not realistic to be automated, with too much context to consider
Key Challenges

• Develop several different types of explanations, e.g.,
 - visual analytics, prototypical examples, deductive argumentative systems
 - in four domains: electric vehicles, metro trains, steel plants, wind farms

• Demonstrate benefits of explanations for AI decisions
 - identify component/part of the process where the problem has occurred
 - understand the severity and future consequences of detected deviations
 - choose optimal repair from several alternatives based on different priorities
 - understand the reasons why the problem has occurred in the first place, as a way to improve system design for the future
Partners

(coordinator)

- Halmstad University, Center for Applied Intelligent Systems Research
 - CAISR research focuses on weakly-supervised machine learning
 - “aware” intelligent systems & semi-automatic knowledge creation
- Inesc Tec, Laboratory of Artificial Intelligence and Decision Support
 - LIAAD works on modelling non-stationary data that evolve over time
 - require ability of handling regime shifts in the process generating data
- Jagiellonian University, Human-Centred AI Laboratory
 - researchers from engineering, law, psychology, games, physics
 - integration of human expert-based decision making with the AI operation
- IMT Lille-Douai
 - define a strategy for the design of predictive maintenance actions
 - optimize maintenance costs, logistic inventory and environmental conditions
Organised Events

Summer School on Data-Driven Predictive Maintenance for Industry 4.0

70+ attendees

DSAA 2021
06. October - 09. October

Special Sessions

- GeoData - EnGeData: Environmental and Geo-Spatial Data Analytics
- PraXai - Practical applications of explainable artificial intelligence methods
- Tensor - Tensor Analytics for Emerging Applications
- XPM - XPdM 2021 - Data-Driven Predictive Maintenance for Industry 4.0

Website: https://sites.google.com/g.upto.port/dppdm2021/home
Starts: 10-07-2021 10:00 - 11:00
Introduction to Predictive Maintenance

States of the equipment
- Normal/Healthy is acceptable/desired state, while Fault is an unpermitted deviation from the acceptable operating condition
- Failure is permanent inability of a system to perform its function; Failure Mode is cause of failure or one way a system can fail
- Component Degradation or Wear is change in condition over time, and Health Indicators are quantifiable characteristics of it
- Anomaly or Outlier is a deviation from the majority (or norm)

Analysis & Approach
- Fault Detection is determination of whether a fault is present in the system
- Fault Isolation is determination of the kind, location and time of fault occurrence (typically follows fault detection)
 - Root Cause Analysis is the process of discovering the underlying original causes of problems
- Fault Identification is determination of the size and time-variant behaviour of a fault (typically follows fault isolation)
- Fault Diagnosis is an overall terms combining fault isolation and fault identification
- Prognosis is determination of whether a fault (or failure) is imminent and forecasting future behaviour of the system
 - Failure Prediction is forecasting whether failure(s) will occur within a predefined future time frame
 - RUL Prediction is forecasting the time left until the equipment no longer functions correctly
 - Survival Analysis is estimating expected duration of time until an event occurs (reliability analysis, event history analysis)

Maintenance Paradigm
- Reactive Maintenance is performing maintenance after the equipment breakdown happens
- Preventive Maintenance are maintenance actions performed based on predetermined time intervals or age of the equipment
- Predictive Maintenance is maintenance being adaptively scheduled based on continuously monitored condition
- Prescriptive Maintenance aims to predict required maintenance measures, or a course of actions based on current condition
Incremental Learning and Anomaly Explanation

<table>
<thead>
<tr>
<th>Bus 369</th>
<th>Mode</th>
<th>#FP</th>
<th>#TP</th>
<th>#FN</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F1 score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trained with Bus 369</td>
<td>Static</td>
<td>3</td>
<td>16</td>
<td>1</td>
<td>84</td>
<td>94</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Incremental Learning</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Trained with Bus 370</td>
<td>Static</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>72</td>
<td>76</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Incremental Learning</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>83</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Trained with Bus 371</td>
<td>Static</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>75</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Incremental Learning</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>82</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>
Explainable Anomaly Detection for Asset Degradation

- Slab is passed through a roughing mill where its thickness is reduced to about 30 mm.
- Transfer bar is passed through six rolling stands to reach final thickness (1.8 – 25.0 mm).
- Steel is cooled in the lamina cooling section.
- At end steel is wound up to form a coil.

Table 5. The obtained hyperparameters form HRM data set.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>AE</th>
<th>VAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layers</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Latent size</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Activation</td>
<td>relu</td>
<td>relu</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.302</td>
<td>0.315</td>
</tr>
<tr>
<td>Batch size</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Epochs</td>
<td>45</td>
<td>34</td>
</tr>
<tr>
<td>Quantile threshold</td>
<td>0.930</td>
<td>0.916</td>
</tr>
<tr>
<td>Beta max</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Epochs Beta</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Confusion matrices for HRM data set.

<table>
<thead>
<tr>
<th></th>
<th>AE</th>
<th>VAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>Anomaly</td>
<td>Anomaly</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>40</td>
</tr>
</tbody>
</table>

Graph showing SHAP values and their impact on model output.
eXplainable Predictive Maintenance

XPM

Halmstad University & Inesc Tec &
Jagiellonian University & IMT Lille-Douai