CHIST-ERA Projects Seminar 2021
Topic XAI
starting 1st of May, 2021.
XAI face

Measuring and Improving Explainability for AI-based Face Recognition
Jean-Luc DUGELAY (EURECOM, Sophia Antipolis)
April 13, 2021
XAI face
Measuring and Improving Explainability for AI-based Face Recognition

Partners

- **FRANCE: EURECOM**
 Jean-Luc Dugelay & Chiara GALDI
 Expertise includes: Face recognition

- **AUSTRIA: JOANNEUM RESEARCH**
 Martin Winter & Wemer Bailer
 Expertise includes: Machine Learning

- **PORTUGAL: Instituto de Telecomunicações**
 Fernando Pereira & João Ascenso
 Expertise includes: AI-based coding

- **AUSTRIA: U. Vienna**
 Erich Schweighofer & Jakob Zanol & Felix Schmautzer
 Expertise includes: Privacy/ethics

- **SWITZERLAND: EPFL**
 Touradj Ebrahimi
 Expertise includes: Performance/evaluation metrics
Face Recognition

- **Key technology** in our society, frequently used in multiple applications: access control, video surveillance, social media, ...
 - raises several security and **ethical issues**

- **Trust** is a central issue in (AI-based) Face Recognition (FR)
 - various **weaknesses and biases** depending on datasets, training protocol, network architecture, ...
XAI face
Measuring and Improving Explainability for AI-based Face Recognition
Project contributions beyond SoA

❖ CNT1: develop clear legal guidelines on the use and design of AI-based FR following the privacy-by-design approach;

❖ CNT2: disentangling demographic information (age, gender, ethnicity) from the overall face representation in order to understand the impact of such traits on FR but also to develop demographic free face recognition;

❖ CNT3: address fairness and non-discrimination issues by following the idea of de-biasing during the training;

❖ CNT4: optimize the tradeoff between interpretability and performance;

❖ CNT5: create tools that will allow assessment and measurement of performance and explanation of decisions of AI-based FR systems;

❖ CNT6: understand how future AI-based coding solutions may be different from a recognition explainability point of view.
OBJ1: To Identify and describe **key influencing factors** that impact performance of FR based on ML.

OBJ2: To design **metrics and protocols** that measure the impact of the influencing factors on FR systems based on ML and AI.

OBJ3: To quantify and understand the **interaction between influencing factors** and create an explainable FR system based on ML.

OBJ4: To address **fairness as well as legal and ethical** obligations for FR systems based on ML and AI and develop a systematic approach to ensure fairness and trustworthiness, informational self determination and acceptance of the persons concerned/data subjects.

OBJ5: **To disseminate** the results of the project to the scientific community, the industry, as well as to a larger audience.
Measuring and Improving Explainability for AI-based Face Recognition Approach and research method

to break down the problem into the analysis of single or small groups of factors at a time
XAI face
Measuring and Improving Explainability for AI-based Face Recognition
Workpakages

WP1: Management

WP2: Influencing factors, performance metrics, and protocols

WP3: Acquisition, databases, and data protection

WP4: Explainable approach design and implementation

WP5: End-to-end face recognition system

WP6: Dissemination and exploitation
Measuring and Improving Explainability for AI-based Face Recognition

Expected technical impact

• **Deeper understanding** of the AI based FR mechanisms and capability to express them using well identified key influencing factors; this would represent the end of the ‘black box’ negative stigma;

• Availability of **new FR solutions beyond the SoA** where AI explainability is a key feature, notably allowing to optimize the trade-off between interpretability/explainability and recognition performance;

• Availability of **non gender, age, or ethnicity biased FR solutions**, able to disentangle this information from the overall face representation, thus offering truly inclusive technical approaches;

• Availability of **novel, efficient metrics and protocols** for explainability assessment of AI-based FR systems to be made publicly available for researchers and end users; this will also contribute to the definition of standards for AI explainability assessment;
• **Increased general trust and social acceptance** of AI-based FR by providing effective instruments to explain the decisions made by such systems, notably explanatory videos and papers appropriate for the general user;

• Increased fulfilment of the objectives outlined in the GDPR notably regarding the “**right to explanation**” in order the legal obligations for providing explanations to AI decisions may be fulfilled;

• **Availability of solid technical literature** on influencing factors, assessment metrics and protocols, and FR systems driven by AI explainability;

• Strengthened **training of graduate students** for their future careers by using the results of the project in several teaching programs in European universities.
Thank you for your attention

jean-luc.dugelay@eurecom.fr / @jld2eurecom