Introduction: Causal eXplainable Reinforcement Learning

- ML typically uses input-output correlations
- Reinforcement Learning (RL) uses random exploration
- To improve, similar to humans, we will:
 - Infer a causal model of the environment
 - Use that model to plan & suggest explainable actions on environment in RL loop
Learn a micro/macro-level causal model
Interpretable macro variables and actions
Embed in an RL loop:
- Macro-control loop
- Macro-planning loop
- Explanations & Expert in loop
Partners and Applications

Partners:

❖ University of Sheffield, UK:
 - Aditya Gilra & Eleni Vasilaki
 neural RL & model learning
❖ University of Vienna, Austria:
 - Moritz Grosse-Wentrup
 causal inference & neuro-rehab
❖ INRIA, Lille, France:
 - Philippe Preux
 RL and applications

❖ Intensive care
 (as baseline, not deployed)
❖ Post-stroke neuro-rehabilitation via non-invasive brain stimulation
❖ Continuous-domain bio-plausible implementation
❖ E-education
❖ Farming