HIPERCOM

High-Performance Coherent Quantum Communications

September 2011 – August 2014
Coordinated by Nicolas J. Cerf
HIPERCOM Consortium

<table>
<thead>
<tr>
<th>Partner Number</th>
<th>Country</th>
<th>Institution/ Department</th>
<th>Name of the group leader</th>
<th>Other personnel participating in the project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>Belgium</td>
<td>Université Libre de Bruxelles (ULB) / Centre for Quantum Information and Communication</td>
<td>Nicolas J. Cerf</td>
<td>Evgueni Karpov, Raul Garcia-Patron</td>
</tr>
<tr>
<td>Th-Ex</td>
<td>France</td>
<td>Institut d’Optique Graduate School (IO) / Laboratoire Charles Fabry</td>
<td>Philippe Grangier</td>
<td>Rosa Tualle-Brouri, Rémi Blandino</td>
</tr>
<tr>
<td>Th</td>
<td>Germany</td>
<td>Max Planck Society / Max Planck Institute for the Science of Light (MPL)</td>
<td>Gerd Leuchs</td>
<td>Peter van Loock, Christoph Marquardt</td>
</tr>
<tr>
<td>Th-Ex</td>
<td>UK</td>
<td>University of York (UY) / Computer Science Department</td>
<td>Samuel L. Braunstein</td>
<td>Stefano Pirandola</td>
</tr>
<tr>
<td>Th</td>
<td>France</td>
<td>Telecom Paris Tech (TPT) / Laboratoire Traitement et Communication de l’Information</td>
<td>Eleni Diamanti</td>
<td>Damian Markham</td>
</tr>
<tr>
<td>Indus</td>
<td>France</td>
<td>SeQureNet (SQN)</td>
<td>Sebastien Kunz-Jacques</td>
<td>Paul Jouguet</td>
</tr>
</tbody>
</table>
Use of optical « continuous variables » instead of qubits

The qubit has become the « cornerstone » of quantum information sciences (most QIPC processes have been originally developed with qubits)

but several advantages of CV information carriers!

- e.g., light field: $A \cos(\omega t + \varphi)$
 - ... coherent communications
Key Challenge of HIPERCOM

Develop *coherent quantum communication* in order to combine
- the high bandwidth achievable by telecom components (e.g., homodyne detection)
- the fundamental benefits of quantum mechanics (e.g., unconditional security)

Fundamental problem: *quantum optical amplifier* cannot be used simply as a repeater because it is inherently limited by quantum noise.

The *objective of HIPERCOM* is to explore various techniques aiming at circumventing this problem and *enhancing the range* of coherent quantum communications with a special emphasis on today’s most developed platform towards applications, namely *CV Quantum Key Distribution*
[see Eleni Diamanti's talk]
Different strategies will be followed in order to approach long-distance coherent CV quantum communications ranging from the use of classical coding and other post-processing algorithms, which is the most directly applicable solution in the short term, to more elaborate techniques relying on specific quantum optical schemes and ultimately on the use of quantum error-correcting codes.

In between these two extreme approaches, the potential solution offered by the noiseless linear amplifier or similar heralded operations will be investigated.

WP1: Improve classical and optical post-processing (e.g. classical coding, bidirectional protocols)

WP2: Beyond classical coding but exper. accessible (e.g. noiseless amplifier & other heralded proc.)

WP3: Full quantum solution to range enhancement (e.g. quantum coding, non-Gaussian CV codes)
Expected Outcomes of HIPERCOM

Theoretical progresses on coherent quantum communications
quantum coding, Gaussian channel capacities, general security proofs of CV-QKD (incl. coherent attacks, side-channels, etc.)

Experimental demonstrations of heralded non-Gaussian quantum processes
(noiseless linear amplifier & its application to CV-QKD)

Improved practical realizations of CV-QKD platform
working over longer distances and with stronger security assessment

- pave the way towards long-distance coherent CV quantum communications

- we are on a good track (all scheduled tasks as of Y2 were completed)
Knowledge Dissemination

WP0 : Management & organization of annual topical workshops

 e.g. Continuous-variable Quantum Information Processing workshop series

HIPERCOM kick-off meeting, Telecom ParisTech, Paris, September 26-27, 2011, organized by Eleni Diamanti, widened to non-HIPERCOM invited speakers, was turned into 8th workshop CV-QIP '11

9th workshop CV-QIP '12, Copenhagen, April 27-30, 2012
organized by Ulrik Andersen with ~ 25% of the attendance from HIPERCOM

HIPERCOM mid-term meeting, Jussieu, Paris, January 30 - February 1st, 2013, organized by Julien Laurat (coupled to project QSCALE), widened to other experts, was turned into 10th workshop CV-QIP '13

21th Central-European Workhop on Quantum Optics, Brussels, June 23-27, 2014
organized by Evgueni Karpov & Nicolas Cerf (~ 200 participants expected)
including special spessions for HIPERCOM ptoject & QSCALE project
21st Central European Workshop on Quantum Optics

Brussels, 23 – 27 June, 2014

Chair: Evgueni Karpov – ULB

Local organizing committee:

Edouard Brainis – UG
Nicolas Cerf (co-chair) – ULB
Serge Massar – ULB
Krassimir Panajotov – VUB
Hugo Thienpont - VUB
Scientific Workpackages

WP1 + 2 + 3: rest of this talk

2 selected results in connection with NLA & CV-QKD

- Noiseless linear amplifier
 Further progresses on theoretical understanding of noiseless amplification of non-Gaussian states

 (ULB) [this talk]

- CV-QKD experimental platform
 Further progresses on optical implementation

 (TNT & SQN) [Eleni Diamanti's talk]
Noiseless Linear Amplifier (NLA)

Physical approximation to the unphysical target operation

\[|\alpha\rangle \rightarrow |g\alpha\rangle \quad g > 1 \]

Quantum filter diagonal in Fock basis:

\[\hat{G} = g^\hat{n} \quad |n\rangle \rightarrow g^n |n\rangle \quad |\alpha\rangle \rightarrow g^n |\alpha\rangle \propto e^{(g^2-1)|\alpha|^2/2} |g\alpha\rangle \]

Applications:

- High-fidelity probabilistic cloning / phase estimation
- Filtration of high-entangled pure states (entanglement concentration)
- Phase-insensitive (universal) squeezing
- Breeding of Schrödinger-cat states
- Compensation of optical losses in quantum communication and quantum key distribution (IO, ULB)
Experimental noiseless amplification

Heralded noiseless linear amplification and distillation of entanglement
G. Y. Xiang1, T. C. Ralph2, A. P. Lund3, N. Walk2 and G. J. Pryde4*

A high-fidelity noiseless amplifier for quantum light states
A. Zavatta1, J. Fiurášek2 and M. Bellini2,3*

Noise-powered probabilistic concentration of phase information
Mario A. Usuga1,2, Christian R. Müller1,3, Christoffer Wittmann1,3, Petr Marek4, Radim Filip4, Christoph Marquardt1,3, Gerd Leuchs1,3 and Ulrik L. Andersen2,*
Truncation to space spanned by vacuum and single-photon state

\[|\alpha\rangle \approx |0\rangle + \alpha |1\rangle \rightarrow |0\rangle + g\alpha |1\rangle \]

\[
\begin{pmatrix}
 t |1\rangle_T |0\rangle_R + r |0\rangle_T |1\rangle_R \\
 |0\rangle_{in} + \alpha |1\rangle_{in}
\end{pmatrix} \rightarrow r |0\rangle_T + t\alpha |1\rangle_T \propto |0\rangle_T + g\alpha |1\rangle_T
\]

... choose \(t/r = g \)
NLA by photon addition / subtraction (Florence)

\[g \hat{n} \approx \sum_{k=0}^{N} \frac{d^k}{k!} \hat{n}^k \]

keep only 1\(^{st}\) order

\[g \hat{n} \approx (g-1)\hat{n} + 1 = (g-2) \hat{a}^+ \hat{a} + \hat{a} \hat{a}^+ \]

choose \(g = 2 \)

\[\hat{G}_{g=2} = \hat{a} \hat{a}^+ \]

... very crude approximation, works well only for weak coherent states

\[\hat{a} \hat{a}^+ (|0\rangle + \alpha |1\rangle) = \hat{a} (|1\rangle + \sqrt{2} \alpha |2\rangle) = |0\rangle + 2 \alpha |2\rangle \]
Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier

Rémi Blandino,1,* Anthony Leverrier,2 Marco Barbieri,1,† Jean Etesse,1 Philippe Grangier,1 and Rosa Tualle-Brouri1,3

Virtual noiseless amplification and Gaussian post-selection in continuous-variable quantum key distribution

Jaromír Fiurášek1 and Nicolas J. Cerf2

Gaussian Post-selection for Continuous Variable Quantum Cryptography

Nathan Walk1* and Timothy C. Ralph
Thomas Symul and Ping Koy Lam

CV QKD with heterodyne detection

Alice prepares coherent states
Bob performs projection onto coherent states

\[|\Psi_{EPR}\rangle = \sqrt{1-\lambda^2} \sum_{n=0}^{\infty} \lambda^n |n\rangle |n\rangle \]
CV QKD augmented with noiseless amplification

Noiseless amplification can be emulated on Bob's measured data.
Emulation of noiseless amplification by postselection

\[P(\beta) \propto \langle \beta | g^n \rho_B g^n | \beta \rangle \]
\[P(\beta) \propto e^{(g^2-1)|\beta|^2} \langle g \beta | \rho_B | g \beta \rangle \]
\[\propto Q(\gamma) \langle \gamma | \rho_B | \gamma \rangle \]

\[\beta = \frac{\gamma}{g} \quad (g > 1) \]
\[Q(\gamma) = \exp \left[(1 - g^{-2})|\gamma|^2 \right] \]

Post-selection: the data is accepted with probability proportional to \(Q(\gamma) \).
The protocol is completely equivalent to the following sequence:

(i) probabilistic entanglement concentration by local noiseless amplification
(ii) standard deterministic entanglement-based CV QKD protocol

The security properties of our scheme with postselection are thus the same as the security properties of the standard deterministic protocol.
Lossy channel and noiseless amplification

![Graph](image)

\[a_{out} = \sqrt{T} a_{in} + \sqrt{1-T} a_{th} \]

\[\langle a_{th}^{\dagger} a_{th} \rangle = \frac{\bar{n}_{th}}{1-T} \]

FIG. 3. (Color online) CV QKD over a lossy channel of transmittance \(T \) and output excess thermal noise \(\bar{n}_{th} \). The maximum tolerable noise \(\bar{n}_{th,\text{max}} \) decreases for decreasing \(T \). A secret key can be generated if \(\bar{n}_{th} < \bar{n}_{th,\text{max}} \), shown with the blue solid line (standard protocol) or red dashed line (protocol augmented with virtual noiseless amplification). The gray area indicates the class of channels for which noiseless amplification is beneficial. We optimize over Alice’s modulation variance \(V \) and Bob’s amplification gain \(g \), and we assume \(\eta = 0.9 \). The inset shows a zoom-in of the region of high losses, \(T \leq 0.1 \).
Achievable secret key rates

FIG. 4. Achievable secret key rate K in CV QKD over a lossy channel with 0.2 dB loss per km. (a) Comparison of the protocol without Gaussian postselection (solid line) and with optimal noiseless amplification (dashed line), $n_{th} = 2.5 \times 10^{-3}$, $\gamma_M = 3\sqrt{V}$.
(b) Comparison of the protocol without Gaussian postselection (solid line) and with optimal noiseless attenuation (dashed line), $n_{th} = 0.1$. We assume $\eta = 0.9$, and the parameters V, g, and ν were optimized for each d so as to maximize K. The resulting optimal g and ν are plotted in panels (c) and (d), respectively.
Noiseless amplification of non-Gaussian states

- Description in phase space (using Husimi Q-function)
- Counterintuitive action on the mean field amplitude
- Proposal for the experimental verification of mean field amplification by noiseless attenuation
Description of NLA in phase-space representation

\[Q(\alpha) = \frac{1}{\pi} \langle \alpha | \hat{\rho} | \alpha \rangle \]

\[Q'(\alpha) \propto \frac{1}{\pi} \langle \alpha | g \hat{n} \hat{\rho} g \hat{n} | \alpha \rangle \]

use

\[g \hat{n} | \alpha \rangle = e^{(g^2 - 1)|\alpha|^2/2} |g \alpha \rangle \]

\[\propto \frac{1}{\pi} e^{(g^2 - 1)|\alpha|^2} \langle g \alpha | \hat{\rho} | g \alpha \rangle \]

\[Q'(\alpha) \propto e^{(g^2 - 1)|\alpha|^2} Q(g \alpha) \]

... we can track the noiseless amplification of an arbitrary state

J. Fiurasek and N.J. Cerf,
PRA 86, 060302(R) (2012)
Noiseless amplification of arbitrary Gaussian state

\[Q(\alpha) = \frac{2}{\sqrt{\pi^2 \det(\gamma + I)}} \exp\left[-(r-d)^T (\gamma + I)^{-1} (r-d)\right] \]

with \(r = (\Re(\alpha), \Im(\alpha))^T \)

\[\gamma' = \left[g^2(\gamma + I)^{-1} - \frac{g^2 - 1}{2} I \right]^{-1} - I \]

\[d' = \left[I - \frac{g^2 - 1}{2}(\gamma - I) \right]^{-1} g d \]

... we can follow the evolution of \((d, \gamma)\) of an any Gaussian state
Evolution of mean field amplitude of Gaussian states

take $\gamma = \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_p^2 \end{pmatrix}$
effective gain G_{eff} depends on σ_i^2

$$d_i' = \frac{2g}{(1 + \sigma_i^2) + g^2(1 - \sigma_i^2)} d_i$$
with $i = x$ or p

1 $< G_{\text{eff}}(\sigma^2 < 1) < g < G_{\text{eff}}(\sigma^2 > 1)$

...noiseless amplification of an arbitrary Gaussian state can only increase the mean field amplitude
Counterintuitive behavior for non-Gaussian states

\[|ψ\rangle = α|0\rangle + β|1\rangle \]

\[g^n |ψ\rangle = α|0\rangle + gβ|1\rangle |n\rangle \]

\[\langle a \rangle_ψ = α^* β \]

\[\langle a \rangle_ψ' = \frac{α^* g β}{|α|^2 + g^2 |β|^2} \]

\[G_{eff} = \frac{\langle a \rangle_ψ'}{\langle a \rangle_ψ} = \frac{g}{1 + (g^2 - 1)|β|^2} < 1 \quad \text{if} \quad |β|^2 > \frac{1}{g + 1} \]

... the single-photon component \(g β \) increases when \(g \) increases, so we tend to \(|1\rangle \) with a mean field tending to 0.

... noiseless amplification may decrease the mean field amplitude!
Experimental proposal for probing this paradox

Use noiseless attenuator with gain $\nu < 1$ (exact map is physical)

Non-Gaussian state made with coherently-displaced single-photon addition on a coherent state (PDC in a nonlinear crystal + weak auxiliary coherent beam)
Noiseless attenuation of single-photon added coherent state

\[|\psi\rangle \propto (\hat{a}^+ + \delta) |\alpha\rangle \]

\[|\psi'\rangle \propto \nu\hat{n} (\hat{a}^+ + \delta) |\alpha\rangle \]
\[= (\nu \hat{a}^+ + \delta) \nu\hat{n} |\alpha\rangle \]
\[\propto (\hat{a}^+ + \delta / \nu) |\nu \alpha\rangle \]

Use \(\nu\hat{n} \hat{a}^+ = \hat{a}^+ \nu\hat{n}+1 \)

Robust against inefficient single-photon detection
\(\eta = 0.25 \)

and imperfect state prepar.

Purity \(p = 0.75 \)
HIPERCOM experimental results on Quantum Key Distribution

Hipercom objectives for continuous-variable QKD

- Improve performance in terms of rate and distance in both fiber optic and free space implementations

- Improve practical security of CV-QKD systems
Long-distance CV-QKD results in Paris

Distance limitation removed
→ new error-correcting codes
→ improved optical stability
→ security against collective attacks including finite-size effects
CV-QKD commercial system: Cygnus

Courtesy: SeQureNet
Free-space experiments in Erlangen

Intra-city point-to-point link of 1.6 km
Free space implementation → polarization encoding → immune to wavefront distortions
Stokes measurement of intense light modes → homodyne detection
Practical security assurance

- Deviations of security proof assumptions from real implementations open the way to hacking
- Hacking helps improve the practical security of QKD
- Side channel attack based on ubiquitous calibration procedures
 → countermeasure: real-time shot noise evaluation

- Trojan horse-type of attack on commercial CV-QKD system

 HIPERCOM collaboration: Paris – Erlangen
Trojan horse attack on commercial CV-QKD system

Objective of the eavesdropper Eve
• read out the state of Alice’s modulators

Eve’s required knowledge
• temporal information
• attenuation of components inside the system

Current progress
• Building Eve’s attack apparatus
• Theoretical analysis of information Eve may obtain from the Trojan horse pulse which contains Alice’s modulator setting