

CHIST-ERA Projects Seminar 2022 Towards Sustainable ICT (S-ICT)

Speaker(s)
March 30th, 2022

Motivation for Sustainable ICT

chist-era

- By 2030, ICT will consume up to 20% of the world's electricity
- To make ICT more sustainable we need to:
 - Make ICT technology more energy efficient
 - Reduce reliance on non renewable energy sources
 - Harvest energy directly at the source
 - ✓ Reduce e-waste

Source: https://media.nature.com/original/magazine-assets/d41586-018-06610-y/d41586-018-06610-y.pdf

Funded Projects

chist-era

2

MetaMagIC

MetaMagIC aims to provide effective solutions to address world challenges related to the use of energy-efficient and sustainable ICT technologies based on magnetic functional devices.

- Energy-efficient or autonomous magnetic sensors with enhanced sensitivity
- Low-power electronic devices operated with residual magnetic fields
- · Efficient remote charging systems
- Self-protected magnetic devices with extended lifetimes

ECOMOME ETS

- Conduct the first independent measurement study on mobile network energy consumption
- Design clear and accurate energy consumption models, to be used by decision makers and the general public

Propose and evaluate **energy-aware network management solutions** for

beyond 5G technologies

Equipment

Core Network

SONATA

- Memristors for energy efficient edge devices
- Distributed/Decentralized Machine Learning at the edge
- Over-the-air-computation
- Incorporation of Energy Harvesting into edge nodes and devices
- Real use case applications
 - ✓ Mobile traffic characterization
 - Massive IoT deployments

Envisioned long-term outcomes

	MetaMagIC	SUNRISE	TESLA	SAMBAS	ЕСОМОМЕ	SONATA
1] Reduction of e-waste	✓	V	V			
2] Wireless network optimization	✓	V		V	V	V
3] Efficient mmWave technology		V		V		
4] Power consumption modelling	V			V	V	V
5] Recyclable components	V		V			
6] Reduced natural resource use			V	V		V
7] Al energy reduction					V	V

Role of the CHIST-ERA Support

HISCELA

- Coordination between CHIST-ERA and national agencies went smooth
- CHIST-ERA seminar was useful to foster collaboration among S-ICT projects
 - Structured and moderated cooperation to create a joint presentation is helpful
 - Physical meeting would be useful
- Would be useful to organize additional S-ICT specific workshops throughout the project runtime (in addition to yearly seminar)
 - ✓ For example 1 day extra after the yearly seminar
 - ✓ Mobilize together for future CHIST-ERA calls

9

Responsible Research & Innovation

chist-era

- Gender and diversity
 - Inherit gender unbalance in the ICT field
- Open Science
 - Going beyond open access publications: making data and code publicly available
- Public engagement
 - Design specific tools (apps, websites, add-ons) to share results with policy makers and the general public

Open Science

chist-era

OA publications:

- All (present) partners confirm that their institutions / governments already impose publications to be published on OA platforms
- A willingness to go beyond research papers in OA and publish openly collected data and code

Obstacles:

- Local rules can be different for the partners
- ✓ Consortium agreements not always very clear on patent and IPR issues
- Management of confidential results and data (from industrial partners or collaborators) not always compatible with open science principles.

11

Impact & Technology Transfer

End-user awareness

E.g., Energy consumption visualization, website, videos

Standardization

E.g., ITU, SNS JU, O-RAN Alliance

Industrial partners

Sodira-Connect

Industrial contacts

E.g., British Telecom, Ericsson, NetAl, Magcam, MiniBatt, ...

Questions

Questions?