CHIST-ERA Projects Seminar 2022 Analog Computing for Artificial Intelligence (ACAI) Fabien Alibart March 29, 2022 ## Introduction: Projects of ACAI **JEDAI** - Event Driven Artificial Intelligence Hardware for Biomedical Sensors **AIR** - Analogue Intelligent chip for short and middle range Radar signal processing **SMALL** - Spiking Memristive Architectures for Learning to Learn **APROVIS3D** - Analog PROcessing of bioinspired Vision Sensors for 3D reconstruction **UNICO** - Unsupervised spiking neural networks with analog memristive devices for edge computing ## Introduction: Projects of ACAI #### All ACAI projects are focusing on Edge Computing applications #### <u>MOTIVATION</u> - Energy consumption - Embedded/integrated devices - Intelligent computing #### **UNIFYING ELEMENTS** - Learning / adaptivity - <u>Different input modalities</u> / <u>different processing architectures</u> - Various flavor of Event-based / Analog representation #### **Technology:** - SpiNNaker (many cores) - Custom CMOS chips - Custom hybrid CMOS / memristive technologies ## Introduction: Projects of ACAI #### **Application domains** - ✓ Health monitoring (JEDAI, AIR) - ✓ Edge AI (SMALL, AIR, JEDAI, UNICO) - ✓ Autonomous navigation (APROVIS3D) - ✔ Pattern recognition (UNICO, APROVIS3D, JEDAI) - ✓ Surveillance (AIR, APROVIS3D) - ✔ Robotics (SMALL) ## Major Achievements and Outputs #### Major outputs - ✓ Algorithms for training spiking networks - ✓ Analog HW-friendly algorithms - ✓ Spiking Chip with learning capabilities - ✓ New signal processing architectures - ✔ Creation of new datasets (ECG/ICG, ToF sensors, DVS, radar) open access ## Major Achievements and Outputs #### 38 publications: Journals: Adv. Elect. Mat., TBioCAS, IEEE TNNLS, eLife,... Conferences: NEURIPS, ICONS, ISSCC, ISCAS, AICAS... 3 (+2 pending) Chips manufactured / 2 (+1) embedded platforms ## **Upcoming Challenges and Needs** #### **Long-Term Vision** - ✓ Learning in spiking neural networks - ✓ Enabling event-based signal processing - ✓ Increasing density and robustness of non-volatile memories - ✓ Real-life demonstrations of analog computing #### Research methods and needs - ✓ Complementary expertise of interdisciplinary groups - ✓ Focus on cooperation not competition - ✓ Long-term ambitious research programs - ✓ Industry involvement - ✓ Schedule (delays due to pandemic) 3 already requested + 2 plan to request for extension - ✓ System-level integration (final demonstrator) - ✓ Unifying the neuromorphic community / interdisciplinarity - ✓ Standardization (datasets, data representation) - ✓ Benchmarking / fair comparison / metrics ### Possible Roadmap - Proof of concept with physical demonstrators on dedicate application - Further supports are required towards emerging architectures - ACAI address only some aspect of Edge devices - Diversification should be sustained - Follow-up projects - EIC transition - Suggestion: revisiting of ACAI topic by future CHIST-ERA calls - In-person workshops, seminars,... for the community ## Role of the CHIST-ERA Support - **Selection of interesting topics and guiding national funding agencies** - Opportunity for young researchers to work on ambitious projects - Facilitating transnational collaborations - Networking opportunities - **Extend the Chist-Era website to incorporate individual project website into a common one (links to results, papers, news,...)** - ++ very limited bureaucracy :-)! - -- coordination CHIST-ERA <-> national agencies to avoid double applications (also for project extensions) #### Responsible Research & Innovation - **Examples of good practices:** - Open Access publications - ✓ Scientific talks (Open Science, Science education) - ✓ Sharing datasets in public repositories - Major hurdles: - ✓ Huge effort to make data FAIR-compatible - ✓ Communication with broader audience to raise the awareness and trust - ✓ Adapting the scientific content to a general audience necessitates dedicated resources and competencies #### Open Science - Open Access publications - Scientific talks (Open Science, Science education) - **✓** Sharing datasets with documentation in public repositories Recommendation in the call text to account in the budgets for the effort to make data FAIR-compatible ## Technology Transfer Because of the low maturity, transfer to companies is difficult Hardware is generic and scalable (large companies) vs SME "niche applications" \rightarrow to be addressed Reluctance of industry to openly share the know-how, data, and other results - OS vs IPR #### **ACTIONS:** - Patents - Massively open source - Contributing knowledge to marketable products - University spinoff (Arc Instruments) ## Questions ## **Questions?**