

CHIST-ERA Projects Seminar Cross Topics Topic TMCS 2015

G. Ducournau, C. Del Rio Bocio, C. Gu

Paris, April 12th, 2018

Introduction: Projects of the topic

- * TMCS: terahertz (THz) band for fast wireless communications
- **Goal:** demonstrate the use of 'terahertz' band for higher capacity (data-rate)
- Need developments at componants AND system level

Why?

- We all need to communicate, faster and faster
- If we take into account the user needs for bandwidth, actual systems can't handle this (radio ressources over crowded)
- this is driving the 5G implementation and beyond 5G research

- **How?** THz communications scenarios studied in TMCS:
- Long range, Fixed link (point to point), advanced technology (feed by fiber networks)
- Short range: adjustable link (mobile user), cheaper technology, steerable antenna)

Introduction of the domain

❖ What is THz?

- √ There remains a lack of sources at the THz frequency range.
- √ Two possibilities:

Introduction of the domain

Where we should do THz links?

Atmosphere is suitable for THz coms around 200-300 GHz

Frequencies not (yet) allocated beyond 275 GHz

TERALINKS in a nutshell

TERALINKS: main goals

- ✓ Achieve the first outdoor THz link, with 40 Gbps data-rate real-time
- ✓ Combine photonics, tube amplifier and smart antennas

Distinctive features

 ✓ Push and interconnect different technologies towards a real functionnal system for back-haul links

Example:

1 km targeted system with 40 Gbps

Partners:

Univ Lille [FR], Lancaster Univ [UK], Queen Mary College [UK], Univ. Nice [FR], Univ public of Navarra [SP]

WISDOM in a nutshell

WISDOM: main goals

- ✓ Use 3D techniques for fast fabrication THz passive/active antennas
- ✓ Combine 3D and CMOS devices toward power combining/antenna arrays

Distinctive features

✓ Demonstration of beam-steerable links for device to device communications

Examples:

A novel high-gain resonant cavity antenna operating at 300 GHz New unit cell design of the partially reflecting surface layer

Partners:

UniKent [UK], KU Leuven [BE], TU Graz [AT], Univ Warwick [UK]

Major achievements and output

TERALINKS

Devices

- √ THz sources achieved
- ✓ Tube amplifier designed for 240 GHz
- √ 3 types of antenna fabricated & characterized

System

- ✓ 10 Gbps system in the lab demonstrated with silicon photodiodes
- ✓ 100 Gbps system in the lab demonstrated with III-V photodiodes

Website for project dissemination (5 journal papers + 10 conferences (2 invited))

Major achievements and output

*** WISDOM**

- ✓ 3 types of antennas fabricated and measured up to 300 GHz
- ✓ CMOS transceiver integrated with horn
- √ Novel design on metamaterial based lens
- √ Website for project dissemination (2 journal papers + 4 conferences (2 invited))

Upcoming challenges and needs

THz state of the art

Challenges:

- Real capability of the system
- Cost reduction (exemples):
- 3D printed techniques
- use of 28 nm CMOS
- use of industrial silicon photonics
- III-V technologies
- Integration of the system
- Energy efficiency of the links

Roadmap:

TERALINKS: towards km-range links

WISDOM: towards indoor beam-steerable links

Challenges focus

	Real- time capacity	Integra tion	Energy efficiency	3D tech.	CMOS tech.	Silicon- photonics based tech.	III-V tech.
TERALINKS	X	X	X	X		X	X
WISDOM		X	X	X	X		

Role of the CHIST-ERA support

- Helps to establish transnational/interdiscipinary relationships towards THz applications
- Fully in line with european strategy towards THz datacom beyond H2020 programs
 - ✓ Chistera will enable new EU proposals
 - ✓ Chistera helps Europe to contribute in this field (strategic due to recent new IEEE standard 802.15.3d
 - ✓ New topic suggestions:
 - beyond 5G research / sustain the user connectivity
 - Next generation internet application

Questions

Questions?