

CHIST-ERA Projects Seminar Topic <u>Terahertz Band for Next-</u> Generation <u>Mobile</u> <u>Communication Systems</u>

<u>Carlos del Río</u>, Henry Giddens and Alexander Standaert Brussels, March 22-23, 2017

Motivation

- ✓ With the latest and advanced 4G mobile telephony, LTE, a 100 up to 300 Mbps could be reached.
- ✓ As the number of users per cell increase, the system saturates and limits the maximum available rates.

EVOLUTION OF THE

Initial solutions: 5G

- ✓ With the promise of the 5G, even higher data rates are provided to the user.
- ✓ Several strategies to improve the user link:
 - Increasing gain (at user and network sides),
 - Scanning capabilities in both sides
 - MIMO systems,
 - To increase the number of cells reducing their coverages,
 - To use higher capability modulations,
 - New frequency bands...

* Technological problem: Backhaul system

✓ The bottle neck of the system would be the base stations, since they need to be fed with enough capacity to share it between the users.

* Technological problem: Backhaul system

✓ Many wireless links should be planned in the system to provide the final base stations with enough capability to share with the final users.

* Technological problem: Backhaul system

- ✓ Many wireless links should be planned in the system to provide the final base stations with enough capability to share with the final users.
- ✓ Normally, for the components of Communications systems, 10-20% bandwidth could be easily achievable, and if more bandwidth is required, higher frequencies are needed.
- ✓ Terahertz band could be a solution to be able to transport 10-100 Gbps up to the base stations, since it will use the required fractional bandwidth

Terahertz Gap

- ✓ There remains a lack of sources at the THz frequency range.
- √ Two possibilities:

Terahertz Gap

- ✓ There remains a lack of sources at the THz frequency range.
- ✓ Two possibilities:
 - Growing from Microwaves (multipliers)
 - Conversion losses are huge, and the final power at Terahertz is really low.
 - Very complicated system.
 - Amplitude and phase
 - Going down from optics (beating two mode lines of a laser)
 - The conversion losses are also important
 - A Little bit simpler system.
 - Only amplitude.

Introduction: Projects of the topic

- **Within the topic TMCS there two different project:**
 - ✓ WISDOM, Wideband Low-Cost Smart Passive and Active Integrated Antennas for THz Wireless Communications

✓ TERALINKS, TERAhertz high power LINKS using photonic devices, tube amplifiers and Smart antennas

WISDOM Project Goal

- Cheap CMOS THz sources
- **3D** printed antennas on top of the chip
- Antenna array
- Beam steering

* Kick-off: 16 February 2017

WISDOM Consortium

Patrick Reynaert

CMOS THz sources

Steven Gao

Wolfgang Bösch

Antennas and beam steering

3D printing manufacturing

A 0.53 THz radiating source in 28 nm CMOS

Photograph of 530 GHz radiating source

Antenna act as a big inductance at fundamental frequency and provide conjugate match at 3rd harmonic frequency.

Antenna with photoresist lens on top of chip

3D printer "Photonic Professional GT"

- Accurately fabricate tiny structure using photoresist material.
- Simulated 8 dB antenna gain at 530 GHz.

3D model of the photoresist lens

TERALINKS Consortium

Industrial support

UC Davis/DMRC:

(USA)

TERALINKS Consortium

Consortium

Country	Institution/ Department	Name of the Principal Investigator (PI)
France	University Lille 1 (IEMN)	Guillaume Ducournau
France	University of Nice, EpOC	Cyril Luxey
U.K.	Queen Mary – Univ London (QMUL)	Yang Hao
U.K.	Lancaster University (LU)	C. Paoloni
Spain	University public of Navarra (UPNA)	Carlo del Rio Bocio

Industrial partners:

France	ST- Microelectronics	Frederic Gianesello
France	THALES	Daniel Dolfi

USA	Professor Neville
	C. Luhmann, Jr.

TERALINKS Project Goal

***** Kick-off planned for April 7th...

Frequency	220-260 GHz	
THz source	up to1 mW / packaged	
TWT power	Gain > 30 dB	
amplifier	Power: 3-4 W	
Antenna	50 dBi (high gain)	
	> 20 dBi, beam-steering	
	capable (indoor)	
Receiver	Zero bias detector	
(direct)	Schottky ~ 1 kV/W	
Rx bandwidth	40 GHz, including	
(GHz)	baseband amplifier	
Modulation	ASK (real-time)	
	40 Gbit/s	
Link budget	140 dB (1 km)	
(outdoor)	40 dB with 50 dBi	
	antennas	

- TERALINKS target is to establish a THz communication demonstrator:
 - ✓ i) with targeted 40 Gbit/s performance, real-time, for up to 1 km range (outdoor)
 - ✓ ii) Indoor link demonstrating beamsteerable antennae.

TERALINKS System

TERALINKS System

THz com. systems demonstrated

TERALINKS TWT

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 3, MARCH 2013

Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double Corrugated Waveguide

Claudio Paoloni, *Senior Member, IEEE*, Aldo Di Carlo, *Member, IEEE*, Fayçal Bouamrane, Thomas Bouvet, Alain J. Durand, Mikko Kotiranta, *Student Member, IEEE*, Viktor Krozer, *Senior Member, IEEE*, Stephan Megtert, Mauro Mineo, and Vitaliy Zhurbenko, *Member, IEEE*

Orection of 45° bending

Input Port

Drift tube

1236

TERALINKS Broadband Wireless Link

328

IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 4, NO. 3, MAY 2014

Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection

Guillaume Ducournau, Pascal Szriftgiser, Alexandre Beck, Denis Bacquet, Fabio Pavanello, Emilien Peytavit, Mohammed Zaknoune, Tahsin Akalin, *Member, IEEE*, and Jean-François Lampin

TERALINKS Broadband Wireless Link

TERALINKS Broadband Wireless Link

TERALINKS Transformational Optics For THz Lens Antennas

Conclusions

- The two projects are in a very initial state
- **Two strategies quite complementary**
 - ✓ Growing up from Microwave sources, WISDOM
 - ✓ Down converting from optical range, TERAHERTZ
- * Really exciting technology that it should be a reality as soon as possible, many people waiting for interesting results.
- **So you should wait for the first results...**