

CHIST-ERA Projects Seminar

SPTIOT

Gareth Howells

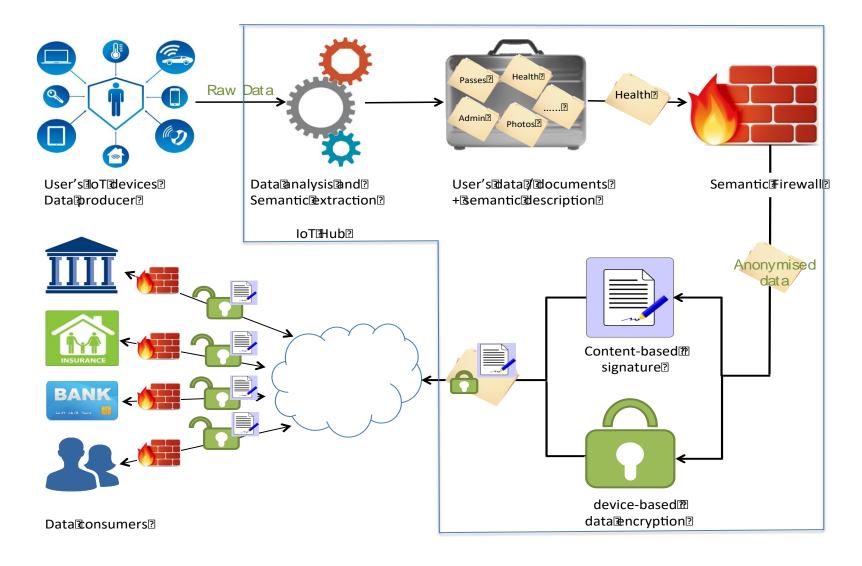
Bucharest, April 4th, 2019

User-Centric Security, Privacy and Trust in the Internet of Things (SPTIoT)

- Methods for data anonymisation
- Technical mechanisms to increase trustworthiness when data is shared between different providers
- Intrusion detection methods
- Authentication using trusted computing (lightweight hardware and software security)
- Dynamic security to allow systems to adapt to varying users
- Data visualisation for increasing user awareness of privacy issues
- Empowering users with risk evaluation tool for their data and contacts;
- Assistive technology/techniques to encourage more secure behaviour and awareness of users

Projects of the Topic

- **SPIRIT**
- **UPRISE-IOT**
- **⇔ID-IoT**
- **USE-IT**
- **SUCCESS**
- **COCOON**

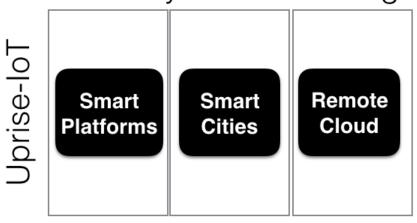

SPIRiT: Security and Privacy foR the Internet of Things

Aim of the project:

- Enhance trust and integrity of IoT technology
- Address lack of user confidence in the technology
- Specifically
 - How to ensure data originates from claimed device?
 - How to ensure it has not been altered?
 - How to ensure users comply with security requirements?
 - *How to ensure the solution is easy and cheap to deploy?
 - * How to ensure system may evolve to changing requirement?

SPIRiT: Security and Privacy foR the Internet of Things

SPIRiT: Security and Privacy foR the Internet of Things


- Comparison of content based on layout done
- Comparison based on text/graphics in progress
- Semantic decomposition of documents
- Global model of the Semantic Firewall done
- Test in real conditions to be conducted soon
- Models for device authentication produced.
- Initial integrator demonstrator developed

UPRISE-IOT: User-Centric PRivacy & Security In The IoT

- ❖ Goal: UPRISE-IoT's goal is to let the users gain awareness and control over data generated and collected by the IoT devices surrounding her.
- Create models for describing the current context of the IoT devices
- Create novel strategies to secure IoT.
- Develop tools that will empower users in IoT.
- Increase the user's awareness.

Privacy Understanding

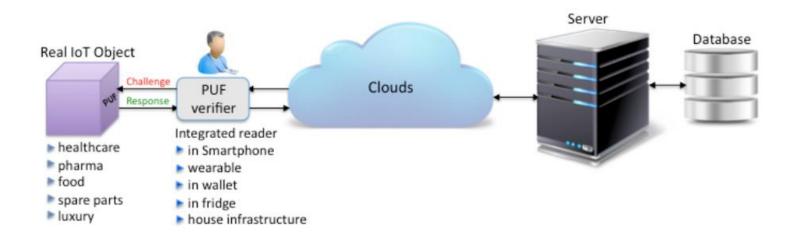
Privacy Control

UPRISE-IOT: User-Centric PRivacy & Security In The IoT

Major Achievements and Outputs

- Strategies to increase privacy awareness & enforce data control
 - Measure the privacy intrusiveness of analytical tools (e.g., ML)
 - Evaluate users' awareness of privacy risks
 - Properly represent & communicate risks to users
 - Communicate intelligible information (related to personal data collection and processing) to data subjects
 - Manage specific and informed consent
- Privacy-Preserving architectural solutions
 - Establishment of trust, service authentication and access control
 - Protection of sensitive and business-critical information
- Design of Privacy Primitives
 - Design primitives to build privacy-by-design IoT systems

http://uprise-iot.supsi.ch/


ID-IoT: IDentification for the Internet of Things

IoT problem areas:

- identification/authentication of constrained IoT devices
- scalability problems

Technologies:

- (optical) PUFs, quantum readout
- approximate nearest neighbor search
- scalable signal processing

ID-IoT: IDentification for the Internet of Things

- Assessing speckle pattern are Physical Unclonable Function (PUF)
 - Measuring big enough entropy from speckle patterns
- Privacy-enhancing features extraction from PUF
 - By quantization, sparsification, and privacy amplification
 - Prevents reconstruction from features
- Group membership protocols
 - Provide evidence a device is part of a group without identification
 - Application to biometry and image search (100 M database)
- Applications of Optical PUF
 - Quantum Secure Authentification, Key Distribution, and Key Recycling
- Highlights
 - "Object identification and authentication", special session at IEEE WIFS
 - ❖ Best C.S. PhD thesis @ University of Rennes 2018
 - Starting collaboration with Airbus on Quantum PUF

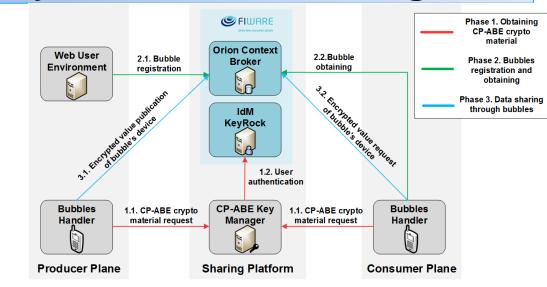
USEIT : User Empowerment For Security And PrIvacy In Internet Of Things

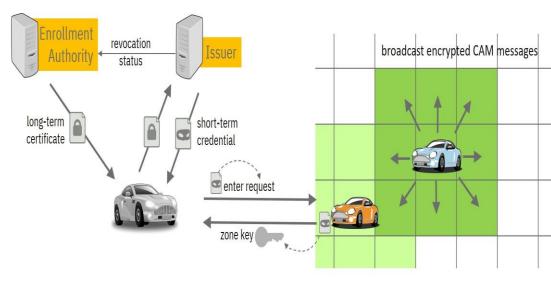
❖ USE-IT: User empowerment for SEcurity and privacy in Internet of Things (http://useit.eu.org)

Objective:

To let users and devices easily and tightly control who has access to which data in which context, without leaking collateral information such as location or behaviour data.

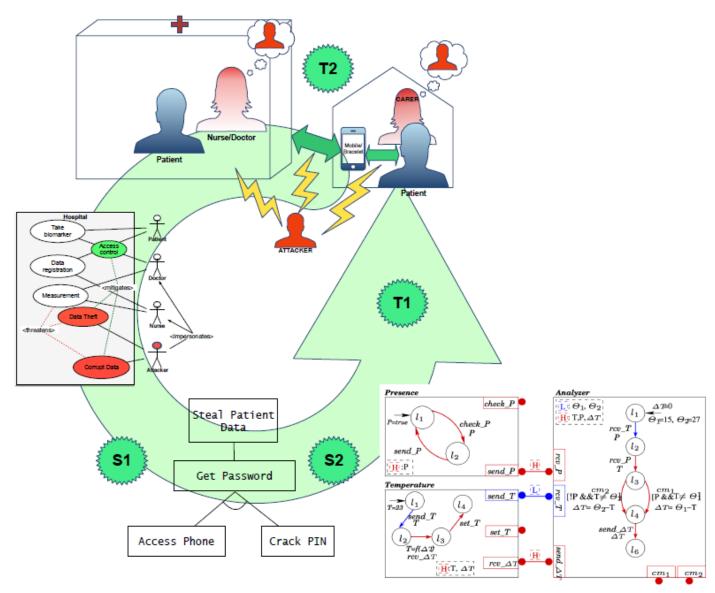
- ✓ Design new privacy-preserving authentication and encryption schemes for constrained IoT environments
- ✓ Create simple policy languages to govern crypto protocols and access control
- ✓ Develop powerful, flexible, lightweight intrusion detection/ reaction for IoT


Partners:


✓ University of Murcia, ES; IBM Research – Zurich, CH; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), FR; Technical University Eindhoven (TUE), NL:

USEIT : User Empowerment For Security And PrIvacy In Internet Of Things

- Users empowerment through the use of encryption-based selective disclosure and policybased approaches
- Design of flexible and scalable cryptographic mechanisms to enable a secure IoT-enabled data sharing platform
- Proxy-based Attribute-based re-Encryption approach
- Providing advanced and lightweight cryptographic schemes to be used in C-ITS scenarios
- Privacy-friendly authentication when entering a new zone & receiving zone key


SUCCESS: SecUre ACCESSibility For The Internet Of Things

Overview/Main Goals: SUCCESS, Secure Accessibility for the IoT

- Formal design of privacy-critical IoT scenario
- Risk visualisation by attack tree analysis
- Certified implementation for IoT component architectures
- IoT Pilot scenario: sensor based monitoring for Alzheimer's patient

SUCCESS: SecUre ACCESSibility For The Internet Of Things

SUCCESS: SecUre ACCESSibility For The Internet Of Things

- Pilot infrastructure fully functional
- Security Engineering process is defined in Isabelle (Refinement-Risk Loop)
- BIP methodology extended and Toolchain implemented: Attack Trees and Probabilistic Modelchecking for IoT systems
- ATTop tool provides translation of Attack Trees between different modeling languages

COCOON: Emotion Psychology Meets Cyber Security In IoT Smart Homes

"In Cocoon, we want to understand and build from the User's experience, as a central part in the definition of intrusion detection systems"

Objectives:

- Examine the User's emotional experience
- Put mainstream IoT to the test & develop a new kind of IDS

Major Achievements and Outputs

2000 Participants took part in series of studies to understand experience of victims of cybercrime

Topic Challenges and Needs

- To reach out to the stakeholders to validate our visions
- Certified code generation for IoT devices from component specifications
- Quality and instability of data
- Need to define guidelines for common strategy on data generation and metrics
- Need for new lightweight cryptography for constrained small devices
- Synergy between IDS and reaction system
- Empower users ability to effectively control their data

Possible Roadmap and Role of the CHIST-ERA support

Stress out the importance of the SPTIoT topic as complementary technologies with respect to blockchain for security and privacy of user data

Agreement on publishing a book on SPTIoT topic

Adressing the policy makers on the EU level to include SPTIoT topic in the next Framework programme

Questions

Questions?