

CHIST-ERA Projects Seminar Cross Topics Resilient Trustworthy Cyber-Physical Systems (RTCPS)

> Speaker Awais Rashid (Lancaster University, UK)

Brussels, March 22-23, 2017

Resilient, Trustworthy Cyber-Physical Systems

Four projects in RTCPS

- **COPES:** Consumer-centric Privacy in Smart Energy Grids
- DYPOSIT: Dynamic Policies for Shared Cyber- Physical Infrastructures under Attack
- I-DRESS: Assistive Interactive Robotic System for Support in Dressing
- **SECODE:** Secure Codes to Thwart Cyber- physical Attacks

Chist-era

COPES approach to Smart Meter Privacy

(c) Major Results: SM Privacy Measures and Privacy Enhancing Technology

Design of several energy flow control algorithms considering

✓ Different privacy measures (past focus)

✓ Utility (e.g. energy-cost) – privacy trade-off (future focus)

- 7 conference & 3 journal papers published/submitted
- Outreach to several agencies, companies & events + webpage
- 2 expert advisory roles

- 3 granted *follow-up research projects* on impact of energy storage technology
- Proof-of-concept experiments in KTH Live-In-Lab planned

DYPOSIT Approach to Security and Resilience

Security policies as living, evolving, objects that play a central role in reasoning about the security state of such a CPS and responding to unfolding attacks.

DYPOSIT: Key Results to Date

Attack Analysis

- Ethnography-style study of an actual cyber-physical system
- Testbed analysis and implementation of a range of attacks

Dynamic Policy Models

- Model for dynamic change in an ICS configuration
- Reason about policies using refinement and composition operators

Attack Detection

- SimaticScan: A specialised vulnerability scanner
- SENAMI: Selective, noninvasive, active monitoring for intrusion detection

Platforms

- CerberOS operating system for IoT devices
- Secure application loading and strong isolation, contractually limited access to resources.

- 8 scientific publications
- International workshop on topic
- 4 keynotes and invited talks
- Additional testbed

- Software prototypes
 - ✓ CerberOS
 - ✓ SimaticScan
 - ✓ SENAMI

(c chist-era

I-DRESS: Robotic Dressing Assistance

Aims of I-DRESS project

- Algorithms for pose and garment tracking
- Recognising user's attention and intentions
- Learning from Demonstration algorithms
- Hazard analysis for safe robot operation
- Multimodal user interface for safe physical interaction
- To integrate on a commercial robotic platform.

I-DRESS Achievements

- Pose and gesture detection algorithms
- Human-Human-Interaction testing
- Discrimination between garments using force
- Learning by demonstration (video)

(c chist-era

SECODE Goals

To use Codes to thwart Cyber-physical Attacks:

- Specify and design error correction codes suitable for an efficient protection of sensitive information in the context of Internet of Things (IoT) and connected objects.
- ✓ The protection based on codes is to avoid/mitigate:
 - Passive attacks,
 - Active attacks
- ✓ Study and Use of LCD (Linear Complementary Codes) or LCP (Linear Complementary Pairs) codes, well suited for masking protection

SECODE outcomes/challenges

- ***** Enhance the Code Theory:
 - ✓ Design of "Linear Complementary Dual" LCD codes
- **Assess the security level based on Code:**
 - ✓ What are the Security parameters against Physical attacks ?
- Implement a Cyber-physical protected platform:
 - ✓ Based on modified LLVM
 - ✓ Automatic insertion of protection based on codes

Future Challenges: Digitalisation

Estimated 50bn connected devices!

Even more digitalisation!

Estimated 35 zeta-bytes (35 x 10²¹) of digital records!

And hyper-connectivity!

Future Research Direction for RTCPS

- Digitalisation Security and Privacy Ergonomics by Design
 - ✓ Gap between person's understanding and what goes on in the system
 - ✓ Human in-the-loop
 - Automation vs. agent interaction
 - Leveraging the human as a resource
 - ✓ System and software architectures
 - ✓ Skills gap
 - ✓ Socially engaged cyber-physical systems
 - Security economics
 - Privacy dynamics
- Developing as a discipline and/or shaping the various disciplines

Challenges and Opportunities

- Privacy little incentive for industry? (participatory data economy)
- Security economic incentives for industry, finally! (critical infrastructure and systems)
- H2020 Secure Societies
 - ✓ Leverage existing security research
- What is needed is more foundational focus (lower TRL)
 - ✓ National and European funding programmes
 - Need multiple competencies across Europe (particular for smaller EU countries)

Security and Privacy

Questions ?