

CHIST-ERA Projects Seminar Day 2, Cross Topics Resilient Trustworthy CyberPhysical Systems (RTCPS)

Speaker Tobias Oechtering (KTH, Sweden)

Bern, April 29th, 2016

Projects of the Resilient Trustworthy Cyber-Physical Systems (RTCPS)

Smart Meter Privacy Problem

- relevant for technology adoption
- strongly protected by EU data protection reform
- a potential show-stopper (smart grid potentials)

COnsumer-centric Privacy in smart Energy gridS (COPES)

Energy consumption profile reveals sensitive consumer behavior which needs to be protected!

COPES approach: Manipulate actual energy prosumption profile!

COPES core objective

Design of innovative privacy enhancing technologies that

- allow utility providers to monitor and control the grid, and
- ii. assure prosumers' privacy.

Imperial College London

COPES challenges

What is the right privacy measure and the most efficient privacy enhancing method?

- ✓ Privacy based on statistical inference
- ✓ Privacy based on information theory
- ✓ Privacy based on computer science

- √ Impact on smart grid control applications
- √ Impact on monitoring and operation

Cross-disciplinarity is necessary for a breakthrough!

DYPOSIT: The Problem

Resilience of large, shared cyber-physical infrastructures under attack

DYPOSIT: Approach

Security policies as living, evolving, objects that play a central role in reasoning about the security state of such a CPS and responding to unfolding attacks.

DYPOSIT: Challenges

Dynamic security policy formulation, adaptation and enforcement in a volatile, multi-stakeholder environment

Humans not just part of the problem but part of the solution

Real-world constraints of shared CPS infrastructures under attack

Actively help users in dressing

- **AIM:** to provide PROACTIVE dressing assistance to
 - ✓ Users with physical or cognitive impairments
 - ✓ high-risk healthcare workers

Safely adapt robot behaviour to changing user needs and preferences, preserving task efficiency

I-DRESS

- We will develop interaction algorithms to safely interact with users and adapt to unforeseen situations
- Scenarios demos:
 - ✓ Putting on / taking off a shoe (1 arm task)
 - ✓ Putting on / taking off a medical gown or a coat (2 arms)

Platforms:

- √ WAM arms IRI, BRL
- √ Baxter robot IDIAP, BRL

I-DRESS Challenges

Human-Robot interaction (HRI):

- ✓ Multimodal interaction
- ✓ Estimation of user preferences, intentions
- Hazard analysis safety
 - ✓ Environment, user reliability, ergonomics
- Physical and cognitive behaviour
 - ✓ Learning for safe close interaction
 - ✓ Adaptative robotic behaviour

cloth and user recognition, multi-modal HRI and system integration robot safety, human factors and interface design robot learning

Connected Objects Security Problems

Sensitive to cyber attacks

- ✓ Perpetrated via the network or by USB keys
- √ Software, taking advantage of weaknesses/bugs

Sensitive to physical attacks

- ✓ The adversary has access to the objects
- ✓ and can perform:
 - Side-channel attacks or probing attacks (passive)
 - Fault Injection attacks (active)

What protections are efficient against both attack types? Can they be **provable**?

SECODE GOALS

Secure Codes to thwart Cyber-physical Attacks

To specify and design error correction codes for IoT security

Use of codes

Provide provable security properties

Attack	Cyber	Physical
Passive	Randomization	Randomization (masking, shuffling,
	(ASLR, DIFT)	blinding)
Active	Detection	Detection (redundancy in time, space
	(canaries, CFI),	information), tolerance
	tolerance (ASLR,	
	code encryption)	

SECODE challenges

Physical attacks:

- ✓ Masking and Detection Multivariate secure with Codes.
- ✓ Porting to Table-based countermeasures.

Cyber-physical attacks

- ✓ Modified LLVM embedding protections based on codes.
- ✓ Protected cryptoprocessor with codes for masking and fault detection.
- ✓ Demonstrator in FPGA and open source CPU

Code specifications:

- ✓ Methods to Design "Linear Complementary Dual" LCD codes which are robust against Cyberphysical attacks:
 - which are "Generalized Quasi Cyclic" (GQC).
 - Or defined by an algebraic curve)
 - Or others?

What does the future hold?

Estimated 50bn connected devices!

Agriculture automation

surveillance

Telemedicine & helthcare

And not just devices!

Estimated 35 zeta-bytes (35 x 10²¹) of digital records!

What can CHIST-ERA do?

"The journey has just begun"

Questions

Questions?