

CHIST-ERA Projects Seminar 2019 Call: HLU Human Language Understanding

Presenter: Benjamin Piwowarski (CNRS/LIP6, Sorbonne Université)
Slides: prepared by Stephen McGregor (LATTICE, CNRS, France)

Bucharest, April 4, 2019

Introduction of the Topic

Ground language learning in the perceptual, emotional and sensorimotor experience of the system

☐ Why

To model high-level, semantic & pragmatic knowledge in a robust way, from varied data, considering situational context

☐ How

Multidisciplinary approach: combine human language processing with related fields such as developmental robotics and cognitive science.

■ Evaluation

Well defined metrics and protocols to measure progress.

chist-era

MUSTER

KU Leuven (Be), ETH Zurich (Ch), SU – Paris (Fr), U. Basque Country (Spain)

- ☐ MUSTER Multimodal processing of Spatial and Temporal ExpRessions
 - ✓ Multi-modal embeddings for text (word & sentence level)
 - ✓ Understanding & evaluation for various HLU tasks
- Main results so far
 - ✓ Multimodal word and sentence representations leveraging images (context, appearance, spatial information)
 - ✓ Multimodal tasks (e.g. visual sentence similarity, query-biased video summary, visual QA)
 - ✓ Study of the properties of multimodal representations
- Valorization
 - √ 22 publications
 - ✓ 4 Datasets produced for evaluating the quality of representations
 - ✓ Tools (dataset manager, annotations, benchmarks, and models)

chist-era

ATLANTIS

Artificial Language uNdersTanding In robotS VUB (Belgium), OFAI (Austria), IBE (Spain), LATTICE (France), Sony CSL (France)

- Our project has explored the way that agents acquire flexible, composable linguistic representations from the earliest stages of development.
 - ☐ We have developed a framework for the context-specific projection of word meaning.
 - ☐ We have applied this framework to image classification tasks and modelling linguistic phenomena such as semantic type coercion.
 - We have gathered data on humans interacting with language learning robots and trained models to learn from this data.
 - We have run simulations of the way semantic representations can begin to emerge from interactions between basic agents without recourse to internal representations.

M2CR: Multimodal Multilingual Continuous Representations for HLU

☐ Goal

- ✓ Design a unified DL architecture
- √ Address major HLU tasks
- ✓ Multiple languages and modalities

Achievements:

- ✓ End-to end multimodal neural MT, ASR and SLU systems
- √ Image to image translation
- ✓ Multi-task learning with multiple modalities
- ✓ Open source datasets and toolkit: nmtpytorch

Partners: CVC (Barcelona, Spain), LIUM (Le Mans, France), MILA (Montreal, Québec)

HOW2 dataset

AMIS: Access Multilingual Information opinionS

- Partners: LORIA (France), AGH (Poland), DEUSTO (Spain), LIA (France)
- Challenge:
 - √ Understanding a foreign video by summarizing

Different Architectures for AMIS

Arabic Source Video

A summarized Video subtitled in English

ReGROUND: Relational Symbol Grounding through Affordance Learning

■ Main ideas:

- Associate symbols in language with referents in an environment
- ☐ From Winograd's SHRDLU to the real world

Distinctive features:

- Multi-modal input (perception and language)
- ☐ Take into account the context & environment;
- Multiple objects and their relationships
- ☐ Build on a notion of affordance from robotics

☐ Results (so far):

- ☐ Anchoring + Probabilistic Reasoning
- ☐ Resolving Inconsistencies between Language
- and Perception
- Partners: KU Leuven (Belgium), Koç University (Turkey), Örebro University (Sweden)

Produced Datasets

☐ AMIS: Video database, 3 languages, 300 hours (100 per language) ☐ ATLANTIS: Manual annotation of multimodal task description □ IGLU: 3 databases and 1 3D multimodal simulator M2CR: 1 multilingual, multi-modal (image and text descriptions in 4 languages) ■ MUSTER: Dataset on spatial similarity for word pairs, visual Word Sense Disambiguation, Visual semantic textual similarity, How To instructions ☐ ReGROUND: 2 artificial data generators for instruction following (infinite)

Individual Achievements

☐ AMIS has created a system that can translate and summarize video from a source language to a target language. ☐ ATLANTIS has developed a framework for the representation of how meaning comes about in context and achieved positive results on experiments employing this framework. ☐ **REGROUND** has combined language grounding, object anchoring, and reasoning in a principled fashion through probability calculus. ■ MUSTER has made advances in learning continuous multimodal representations and studying their properties. ■ M2CR created data and deep learning models to train systems

for multi-modal and multi-lingual HLU tasks.

Major Achievements and Outputs

□ Last year, we expressed a desire to continue and extend collaboration on this project.
 □ We have organized seminars and workshops
 □ Published open-source data & tools
 □ Last year, we noted a need for additional time to accomplish our project objectives.

☐ We understand more than ever how ambitious the goals

associated with grounded language learning are.

Outcomes from Last Year

- ☐ How to model the transfer between modalities across different contexts:
 - We have explored mapping between and combining data of various modalities, with positive results ex. for using the simulation of environmental affordance to perform mappings
- How to evaluate system performance:
 - ☐ Designing tasks where meaningful evaluation is possible *ex*. tasks with a tangible physical outcome.
 - ☐ Subjective evaluations of entire systems and programs.

Outcomes from Last Year

- ☐ How to connect data to actions:
 - We have designed experiments involving moving from subsymbolic data to concrete actions in the world.
- ☐ How to capture linguistic flexibility from the earliest stages of development:
 - We have designed experiments in which semantic representations emerge from the physiognomy of simplistic language learning agents.

Topic Challenges and Needs

We've identified a number of specific topics that are relevant
across multiple components within this project:
Affordances in grounded language learning;
Embodiment and language learning agents;
☐ Identifying and modelling potentially multi-modal context
Designing 'the right task' for the question being asked;
☐ Generalization from event-specific training—avoiding the
learning of bias.

Role of the CHIST-ERA Support

☐ Helpfu	ul features of CHIST-ERA
	e ability to gather a variety of researchers with different ws on a single topic has been beneficial.
	riodic reporting and gatherings have facilitated exchanges ideas within and across teams.
☐ Things	we might look for from CHIST-ERA in the future
big	ore opportunities for meetings with partners between the annual events, particular smaller scale meetings between begroups within the project: could part of the core budget

be directed toward this?

Events Organised by Project Partners

- AMIS: Special session on Accessing Multilingual Information and Opinions (AMIS) at MISSI 2018 (https://missi.pwr.edu.pl/2018/).
- ATLANTIS: Symposium on Language Learning for Artificial Agents (L2A2) at AISB 2019 (<u>www.l2a2.github.io/symposium</u>)
- ☐ M2CR: JHU workshop << Grounded seq. To seq. Transduction>>
- M2CR: Multimodal Machine Translation at WMT 2016-2018 http://statmt.org/wmt18/multimodal-task.html
- M2CR: ICML Workshop: « The HOW2 challenge » https://srvk.github.io/how2-challenge/

Events Organised by Project Partners

- M2CR: IWSLT: Multimodal Spoken Language Translation (in preparation, to be announced)
- M2CR: Using the HOW2 dataset
- M2CR: Daghstul Seminar https://www.dagstuhl.de/no_cache/en/program/calendar/sem-hp/?semnr=19021
- Overall: HLU Mastercall https://chistera-hlu.sciencesconf.org/

Questions

Questions?