CHIST-ERA Projects Seminar 2019
Call: HLU
Human Language Understanding

Presenter: Benjamin Piwowarski (CNRS/LIP6, Sorbonne Université)
Slides: prepared by Stephen McGregor (LATTICE, CNRS, France)

Bucharest, April 4, 2019
Introduction of the Topic

Ground language learning in the perceptual, emotional and sensorimotor experience of the system

- **Why**
 To model high-level, semantic & pragmatic knowledge in a robust way, from varied data, considering situational context

- **How**
 Multidisciplinary approach: combine human language processing with related fields such as developmental robotics and cognitive science.

- **Evaluation**
 Well defined metrics and protocols to measure progress.
MUSTER – Multimodal processing of Spatial and Temporal ExpResSions

- Multi-modal embeddings for text (word & sentence level)
- Understanding & evaluation for various HLU tasks

Main results so far

- Multimodal word and sentence representations leveraging images (context, appearance, spatial information)
- Multimodal tasks (e.g. visual sentence similarity, query-biased video summary, visual QA)
- Study of the properties of multimodal representations

Valorization

- 22 publications
- 4 Datasets produced for evaluating the quality of representations
- Tools (dataset manager, annotations, benchmarks, and models)
Our project has explored the way that agents acquire flexible, composable linguistic representations from the earliest stages of development.

- We have developed a framework for the context-specific projection of word meaning.
- We have applied this framework to image classification tasks and modelling linguistic phenomena such as semantic type coercion.
- We have gathered data on humans interacting with language learning robots and trained models to learn from this data.
- We have run simulations of the way semantic representations can begin to emerge from interactions between basic agents without recourse to internal representations.
M2CR: Multimodal Multilingual Continuous Representations for HLU

Goal
- Design a unified DL architecture
- Address major HLU tasks
- Multiple languages and modalities

Achievements:
- End-to-end multimodal neural MT, ASR and SLU systems
- Image to image translation
- Multi-task learning with multiple modalities
- Open source datasets and toolkit: nmt_pytorch

Partners: CVC (Barcelona, Spain), LIUM (Le Mans, France), MILA (Montreal, Québec)
Partners: **LORIA** (France), AGH (Poland), DEUSTO (Spain), LIA (France)

Challenge:

- Understanding a foreign video by summarizing

Different Architectures for AMIS

Arabic Source Video

A summarized Video subtitled in English
Main ideas:
- Associate symbols in language with referents in an environment
- From Winograd’s SHRDLU to the real world

Distinctive features:
- Multi-modal input (perception and language)
- Take into account the context & environment;
- Multiple objects and their relationships
- Build on a notion of affordance from robotics

Results (so far):
- Anchoring + Probabilistic Reasoning
- Resolving Inconsistencies between Language and Perception

Partners: KU Leuven (Belgium), Koç University (Turkey), Örebro University (Sweden)
Produced Datasets

- AMIS: Video database, 3 languages, 300 hours (100 per language)
- ATLANTIS: Manual annotation of multimodal task description
- IGLU: 3 databases and 1 3D multimodal simulator
- M2CR: 1 multilingual, multi-modal (image and text descriptions in 4 languages)
- MUSTER: Dataset on spatial similarity for word pairs, visual Word Sense Disambiguation, Visual semantic textual similarity, How To instructions
- ReGROUND: 2 artificial data generators for instruction following (infinite)
AMIS has created a system that can translate and summarize video from a source language to a target language.

ATLANTIS has developed a framework for the representation of how meaning comes about in context and achieved positive results on experiments employing this framework.

REGROUND has combined language grounding, object anchoring, and reasoning in a principled fashion through probability calculus.

MUSTER has made advances in learning continuous multi-modal representations and studying their properties.

M2CR created data and deep learning models to train systems for multi-modal and multi-lingual HLU tasks.
Major Achievements and Outputs

- Last year, we expressed a desire to continue and extend collaboration on this project.
 - We have organized seminars and workshops
 - Published open-source data & tools

- Last year, we noted a need for additional time to accomplish our project objectives.
 - We understand more than ever how ambitious the goals associated with grounded language learning are.
Outcomes from Last Year

- How to model the transfer between modalities across different contexts:
 - We have explored mapping between and combining data of various modalities, with positive results ex. for using the simulation of environmental affordance to perform mappings

- How to evaluate system performance:
 - Designing tasks where meaningful evaluation is possible ex. tasks with a tangible physical outcome.
 - Subjective evaluations of entire systems and programs.
Outcomes from Last Year

- **How to connect data to actions:**
 - We have designed experiments involving moving from sub-symbolic data to concrete actions in the world.

- **How to capture linguistic flexibility from the earliest stages of development:**
 - We have designed experiments in which semantic representations emerge from the physiognomy of simplistic language learning agents.
We’ve identified a number of specific topics that are relevant across multiple components within this project:

- Affordances in grounded language learning;
- Embodiment and language learning agents;
- Identifying and modelling potentially multi-modal context;
- Designing ‘the right task’ for the question being asked;
- Generalization from event-specific training—avoiding the learning of bias.
Helpful features of CHIST-ERA

- The ability to gather a variety of researchers with different views on a single topic has been beneficial.
- Periodic reporting and gatherings have facilitated exchanges of ideas within and across teams.

Things we might look for from CHIST-ERA in the future

- More opportunities for meetings with partners between the big annual events, particular smaller scale meetings between sub-groups within the project: could part of the core budget be directed toward this?
Events Organised by Project Partners

- ATLANTIS: Symposium on Language Learning for Artificial Agents (L2A2) at AISB 2019 (www.l2a2.github.io/symposium)
- M2CR: JHU workshop « Grounded seq. To seq. Transduction »
Events Organised by Project Partners

- M2CR: IWSLT: Multimodal Spoken Language Translation (in preparation, to be announced)
- M2CR: Using the HOW2 dataset
- M2CR: Dagstuhl Seminar
 https://www.dagstuhl.de/no_cache/en/program/calendar/calendar_semhp/?semnr=19021
- Overall: HLU Mastercall https://chistera-hlu.sciencesconf.org/
Questions