

CHIST-ERA Projects Seminar Topic Human Language Understanding – Grounded Language Learning

> *Katrien Beuls* Paris, April 12, 2018

Introduction: Topic description

The goal:

✓ Ground language learning in the perceptual, emotional and sensorimotor experience of the system

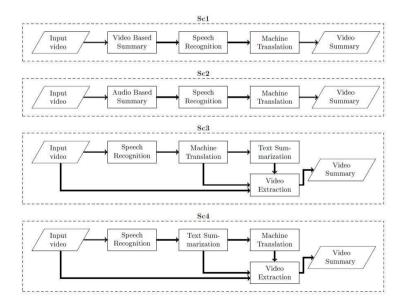
- ✤ Why:
 - ✓ To model high-level, semantic & pragmatic knowledge in a robust way, from varied data, considering situational context

* How:

- Multidisciplinary approach: combine human language processing with related fields such as developmental robotics or cognitive science.
- \checkmark Evaluation
 - Well defined metrics and protocols to measure progress

Introduction: 6 Projects of the topic

- * AMIS (AGH Poland, DEUSTO Spain, LIA France, LORIA France)
- ATLANTIS (VUB Belgium, LATTICE France, OFAI Austria, SONY France, UPF Spain)
- IGLU (UMONS Belgium, Lille1 & INRIA Bordeaux France, UNIZAR Spain, KTH Sweden, MILA Umontréal & Usherbrooke Québec)
- M2CR (CVC Barcelona Spain, LIUM Le Mans France, MILA UMontréal Québec)
- MUSTER (ETH Zurich (CH), KU Leuven (BE), University of the Basque Country (SP), Sorbonne Universite (FR))
- ReGROUND (KU Leuven Belgium, Koç University Turkey, Örebro University Sweden)



Access Multilingual Information opinionS (AMIS)

Partners: LORIA (France), AGH (Poland), DEUSTO (Spain), LIA (France)

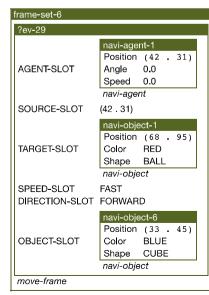
Challenge:

✓ Understanding a foreign video by summarizing

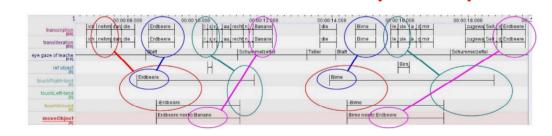
Different Architectures for AMIS

Arabic Source Video

A summarized Video subtitled in English

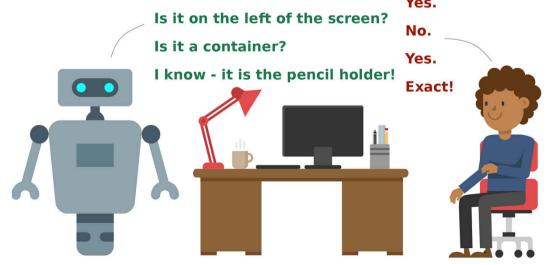


Artificial language understanding in robots (ATLANTIS)


Synthesize the major transitions in the emergence of languages using agent-based computational models

- Object reference scenario: draw attention to objects and/or their properties and spatial relations
- Spatial reference scenario: describe a particular path of Grounded language games

Execute motion frames



Interactive Grounded Language Understanding (IGLU)

Language learning and grounding through dialogue and interaction in multimodal environments.

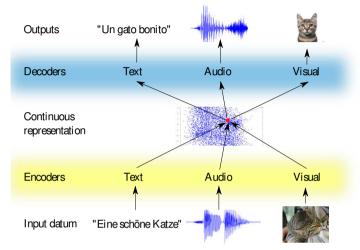
- Goal-oriented visual and dialogue tasks (GuessWhat?!).
- Evaluation frameworks of language-learning cognitive agents for dialogue (HoME – 3D multimodal simulator) and incremental learning (Multimodal Human Robot Interaction dataset).
- Integration of developed algorithms on multiple humanoïd robotic ls the object on the table? Is it on the left of the screen?

M2CR: Multimodal Multilingual Continuous Representations for HLU

* Goal

- ✓ Design a unified deep architecture
- ✓ Address major HLU tasks
- ✓ Multiple languages and modalities

Achievements:

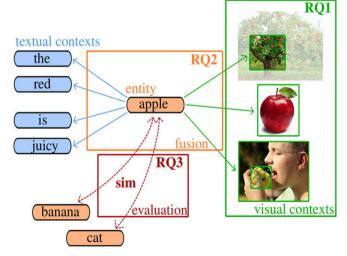

- ✓ Pure neural MT, ASR and SLU systems
- ✓ Image to image translation (sharing encoders and decoders)
- $\checkmark\,$ Multimodal Machine Translation and Image description

Ongoing:

✓ Multi-task systems using multiple modalities

* Next:

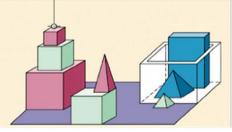
- ✓ Corpus targeting specific (linguistic or visual) aspects (e.g. gender agreement)
- $\checkmark\,$ Integrate encoders and decoders into a single NN
- Partners: CVC (Barcelona, Spain), LIUM (Le Mans, France), MILA (Montreal, Québec)


MUSTER

KU Leuven (Be), ETH Zurich (Ch), SU – Paris (Fr), U. Basque Contry (Spain)

- MUSTER Multimodal processing of Spatial and Temporal ExpRessions
 - ✓ Multi-modal embeddings for text (word & sentence level)
 - $\checkmark\,$ Understanding & evaluation for various HLU tasks
- Main results so far
 - ✓ Multimodal word representations leveraging images (context, appearance, spatial information)
 - ✓ Multimodal tasks (e.g. visual sentence similarity, query-biased video summary)
 - \checkmark Study of the properties of multimodal representations

Valorisation


- ✓ 13 publications
- ✓ 4 Datasets produced for evaluating the quality of representations
- ✓ Tools (annotations, benchmarks, and models)

Relational Symbol Grounding through Affordance learning (ReGround)

- Main ideas
 - \checkmark Associate symbols in language with referents in an environment
 - ✓ Goal: From Winograd's SHRDLU to the real world, here kitchen environment
- Distinctive features
 - ✓ multi-modal input (perception and language)
 - ✓ take into account the context & environment; multiple objects and their relationships
 - ✓ build on a notion of affordance from robotics
 - potential actions in objects in the environmental context
- Results so far
 - Anchoring + relational affordances
 - Link perception of physical world to object propertie
 - ✓ Identification of position in NLP (symbol groundin
- Partners: KU Leuven (Belgium), Koç University (Turkey), Örebro University (Sweden)

Put the blue pyramid on the block in the box

Bring me the tea pot and the sugar

Introduction: Projects of the topic

	Multi-modal	Multi-lingual	Physical Robots	Actions	Relations	Open Data	Systematic Evaluation
AMIS	✓	~				\checkmark	✓
Atlantis	~		~	\checkmark	\checkmark	√	~
IGLU	~		~	√	~	✓	✓
M2CR	1	\checkmark				✓	~
Muster	✓			✓	✓	✓	✓
ReGround	1		~	\checkmark	✓	~	✓

What we learned so far

- At the beginning we were looking to very wide solutions and approaches but realized that we had to focus on more specific goal oriented tasks
- CHIST-ERA HLU created a new research community [HLU-master class 10-11 April 2018, ~ 10 workshops + others planned]
- 3 years is short we would like to find a way to keep the HLU community alive.

Produced databases

- AMIS: Video database, 3 languages, 300 hours (100 per langage)
- ATLANTIS: Manual annotation of multimodal task description
- IGLU: 3 databases and 1 3D multimodal simulator
- M2CR: 1 multilingual, multi-modal (image and text descriptions in 4 languages)
- MUSTER: Dataset on spatial similarity for word pairs, Webimage dataset (2.5 M images), visual Word Sense Disambiguation, Visual semantic textual similarity
- ReGROUND: 2 artificial data generators for instruction following (infinite)

Upcoming challenges and needs (1/3)

Scientific challenges & needs

- ✓ How to combine low level neural approaches with higher level reasoning?
- Many current techniques need large amounts of data: how to address this challenge?
 - investigate techniques that only need few data ...
 - e.g: unsupervised / weakly supervised learning
- ✓ How to improve the transfer between modalities across different contexts?
- ✓ Evaluation is always a challenge

Upcoming challenges and needs (2/3)

- Scientific challenges & needs
 - ✓ How to connect data to actions?
 - use data for action
 - e.g: anticipation, planning
 - use action for data acquisition
 - e.g: sensor planning, perception focus
 - ✓ How to evaluate an intelligent interactive system in real situations?
 - what are the performance metrics?
 - how can we define benchmarks?

Upcoming challenges and needs (3/3)

- Organizational challenges & needs provide resources for:
 - ✓ Data
 - create bodies of annotated data
 - ✓ Evaluation
 - shared test facilities, standard challenges, evaluation campaigns
 - ✓ Common platform (hardware/software)
 - affordable, maintenable
 - ✓ Exchange data, software components, knowledge
 - Make public the outputs of the inititiative
 - Workshops, summer school, ...
 - HLU Website listing the facilities developed by the projects
 - e.g. data sharing, platforms produced by the partners

Remaining challenges and needs - SWOT

- Strengths
 - ✓ Large multimodal datasets are starting to be available usually developed by communities or large groups
 - ✓ Deep Learning as a common framework for different modalities is convenient
- Weaknesses
 - ✓ Deep Learning is not enough
 - ✓ Relevant multi-modal data not yet always available
 - ✓ Copyright and distribution of corpora
- Opportunities
 - ✓ Needs from industry hopefully
 - Common practices, component and data reuse, availability of data, software, computation
 - ✓ Common representations for multi-modal phenomena
 - ✓ Better perception and actuation hardware (robots)
- Threats
 - ✓ Ethics use of technology by companies
 - $\checkmark\,$ Research driven by some companies

Remaining challenges and needs

- Challenges
 - ✓ Combining neural implementations and high-level reasoning
 - ✓ Transfer knowledge from different contexts
 - \checkmark Incremental learning with limited data
 - ✓ Integrating different approaches

In progress

 Evaluation of the different systems that have been built in the projects

Questions ?