
CHIST-ERA Projects Seminar Day 2, Cross Topics Human Language Understanding:

Grounding Language Learning

Loïc Barrault (Université du Maine, France)

Alessandro Saffiotti (Örebro University, Sweden)

Bern, April 29th, 2016

Introduction: Topic description

❖ The goal:

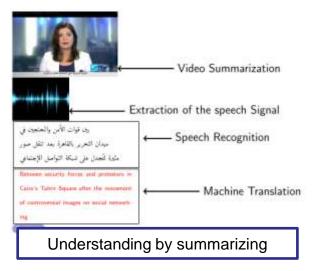
✓ Ground language learning in the perceptual, emotional and sensorimotor experience of the system

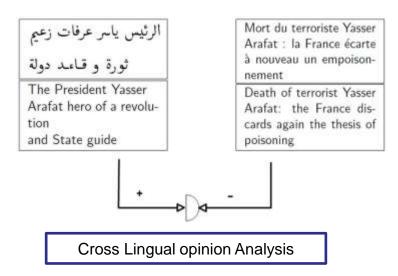
Why:

✓ To model high-level, semantic & pragmatic knowledge in a robust way, from varied data, considering situational context

***** How:

- ✓ Multidisciplinary approach: combine human language processing with related fields such as developmental robotics or cognitive neuroscience.
- ✓ Well defined metrics and protocols to measure progress


Acronym	Role	NFO	Institution	Project Investigator	
AMIS	Р	NCN	AGH University of Science and Technology	Mikolaj Leszczuk	
AMIS	С	ANR	Université de Lorraine - LORIA	Kamel Smaïli	
AMIS	P	ANR	Université d'Avignon LIA	Juan-Manual Torres-Moreno	
AMIS	P	MINECO	DEUSTO	Begoña García-Zapirain	
ATLANTIS	С	FWO	VUB AI Lab	Ann Nowé	
ATLANTIS	Р	ANR	SONY FRANCE	Remi van Trijp	
ATLANTIS	P	MINECO	IBE-UPF	Luc Steels	
ATLANTIS	Р	ANR	LATTICE-CNRS	Thierry Poibeau	
ATLANTIS	Р	FWF	OFAI	Brigitte Krenn	
IGLU	С	FRQNT	Université de Sherbrooke	Jean Rouat	
IGLU	P	VR	KTH Royal Institute of Technology	Giampiero Salvi	
IGLU	Р	FRQNT	Univ. De Montreal	Aaron Courville	
IGLU	Р	FNRS	University of Mons / Numediart Research Institute	Thierry Dutoit	
IGLU	Р	ANR	Université de Lille 1	Olivier Pietquin	
IGLU	Р	ANR	Inria Bordeaux Sud-Ouest / Flowers Team	Manuel Lopes	
IGLU	Р	MINECO	Universidad de Zaragoza	Luis Montesano	
M2CR	Р	FRQNT	Université de Montréal / LISA	Yoshua Bengio	
M2CR	С	ANR	Université du Maine / LIUM	Loïc Barrault	
M2CR	P	MINECO	Computer Vision Center	Joost van de Weijer	
MUSTER	С	FWO	KU Leuven	Marie-Francine Moens	
MUSTER	Р	SNSF	ETH Zurich	Luc Van Gool	
MUSTER	Р	MINECO	University of the Basque Country (UPV/EHU)	Aitor Soroa	
MUSTER	Р	ANR	University Pierre et Marie Curie (UPMC) Paris	Patrick Gallinari	
ReGROUND	Р	TUBITAK	Koç University	Deniz Yuret	
ReGROUND	С	FWO	KU Leuven	Luc De Raedt	
ReGROUND	Р	VR	Örebro University	Alessandro Saffiotti	

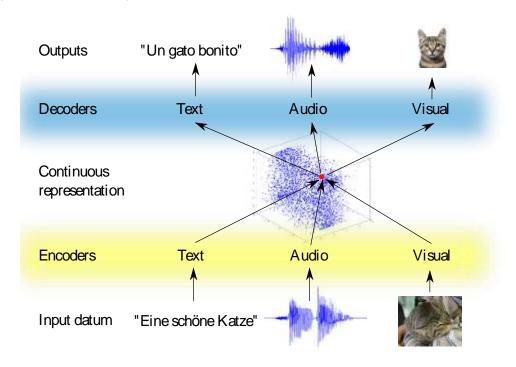


- * AMIS: Access Multilingual Information opinionS
 - ✓ Goals: (1) Understanding / summarize video in a foreign language;
 - (2) Cross-lingual opinion analysis

Distinctive features

✓ Collaborative architecture for understanding a video

Partners: LORIA (France), AGH (Poland), DEUSTO (Spain), UA (France)

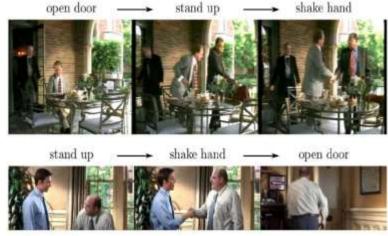


❖ M2CR

- ✓ Goal: Define an common architecture for continuous representation of multimodal and multilingual data
 - To perform several NLP tasks (ASR, MT, HLU)
 - Using deep neural networks

Distinctive features

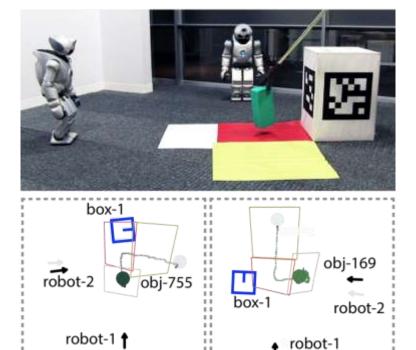
- ✓ Unified architecture
- ✓ Multilinguality
- ✓ Multimodality


Partners: MILA (Montreal, Québec), LIUM (Le Mans, France), CVC (Barcelona, Spain)

- * Muster: Multimodal processing of Spatial and Temporal Expressions
 - ✓ Goal: Exploit visual input coupled with textual modality for learning semantic representations for the recognition of objects and actions, and their spatial and temporal relations

Distinctive features

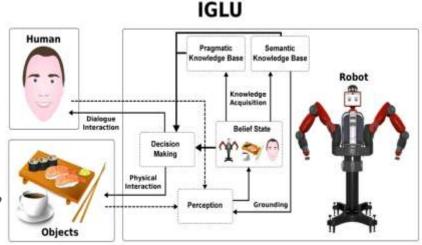
- √ Visual modality to help understand language
- ✓ New paradigm:
 - processing linguistic phenomena related to objects, actions, space and time in language
- ✓ Evaluation on a series of semantic tasks


Partners: KU Leuven (Be), ETH Zurich (Ch), UPMC – Paris (Fr), U. Basque Contry (Spain)

- * ATLANTIS: Artificial Language Understanding in Robots
 - ✓ Goal: Synthesize the major transitions in the emergence of languages using agent-based computational models

Distinctive features

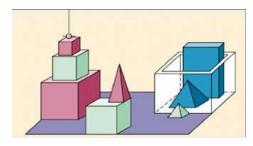
- √ task-based grounded learning
 - object reference and navigation
- √ reversible language processing
 - parsing and production
- ✓ empirical corpora as a blueprint for computational models


Partners: Vrije Universiteit Brussel (AI Lab), Austrian Research Institute for Artificial Intelligence, Universitat Pompeu Fabra (IBE), Lattice-CNRS, Sony Computer Science Lab

- * IGLU: Interactive Grounded Language Understanding
 - ✓ Goal: Synthesize the major transitions in the emergence of languages using agent-based computational models

Distinctive features

- ✓ Motor, physical & verbal interactions
- ✓ Metrics and evaluations of impacts of
 - being grounded/not grounded,
 - interacting/no interaction,
 - adaptation of the agent to new situations,
 - anticipation abilities of the agent,
 - assimilation of new knowledge


Partners: Québec (Sherbrooke, Montréal), Sweden (KTH), France (Lille 1, INRIA), Spain (Zaragoza), Belgium (Mons), UK (Sheffield – not funded)

- * **ReGround:** Relational Symbol Grounding through Affordance learning
 - ✓ Goal: From Winograd's SHRDLU to the real world

Distinctive features

- ✓ multi-modal input (perception and language)
- ✓ take into account the context & environment; multiple objects and their relationships
- ✓ build on a notion of affordance from robotics

Put the blue pyramid on the block in the box

Bring me the tea pot and the sugar

Partners: KU Leuven (Belgium), Koç University (Turkey), Örebro University (Sweden)

	Multi-modal	Multi-lingual	Physical Robots	Actions	Relations	Open Data	Systematic Evaluation
AMIS	✓	✓				✓	✓
Atlantis	✓		✓	✓	✓	✓	✓
IGLU	✓		✓	✓		✓	✓
M2CR	✓	✓				✓	✓
Muster	✓			✓	✓	✓	✓
ReGround	✓		✓	✓	✓	✓	✓

Upcoming challenges and needs (1/3)

Scientific challenges & needs

- ✓ Heterogeneous data (multi-modal, multi-lingual)
- ✓ Many current techniques need shear amount of data: how to address this challenge?
 - investigate techniques that only need few data ...
 - eg: unsupervised / lightly supervised learning
 - ... or can use data from different sources independently
 - eg: lifelong learning / autonomous learning
- ✓ How to transfer learned knowledge across different contexts?

Upcoming challenges and needs (2/3)

- Scientific challenges & needs
 - ✓ How to connect data to actions?
 - use data for action
 - eg: anticipation, planning
 - use action for data acquisition
 - eg: sensor planning, perception focus
 - ✓ How to evaluate an intelligent interactive system in real situations?
 - what are the performance metrics?
 - how can we define benchmarks?

Upcoming challenges and needs (3/3)

- Organizational challenges & needs provide resources for:
 - ✓ Data
 - create bodies of annotated data
 - ✓ Evaluation
 - shared test facilities, standard challenges, evaluation campaigns
 - ✓ Common platform (hardware/software)
 - affordable, maintenable

Possible roadmap for HLU

Pressing needs (now)

- ✓ Robots (and all sort of embedded agents) will be pervasive
- ✓ If grounding is solved, we can interact naturally with them

New opportunities (now)

- ✓ Common representations for multi-modal phenomena
- ✓ Availability of data, software, computation
- ✓ Better perception and actuation hardware

Next step changes (from now to 2026)

✓ From learning from big data
——— To learning from small data

✓ From passive learning
To active learning

✓ From offline learning
To lifelong learning

✓ From observing To acting

✓ From ad-hoc evaluation To community benchmarks

Role of the CHIST-ERA support

In addition to the excellent current work:

- √ Help to address the above organizational challenges
 - create bodies of annotated data
 - create shared test facilities / standard challenges
 - develop a common (hardware/software) platform
- √ Foster further multi-disciplinary interaction
 - eg: inter-disciplinary schools
 - eg: link with COST actions
 - eg: link with MSCA training networks
- ✓ Help with dissemination

Questions

Questions?