L

chist-era

CHIST-ERA Pr

Topic Heteroge
Comp

Projects HPDCJ, DIVIDEND and DIONASYS

Paris, April 12th, 2018

* 4 %

Programme co-funded by the

EUROPEAN UNION

L

Heterogeneity everywhere

chist-era
Memory types
Storage services
Specific vs mainstream CPU vs GPU
Distributed WAN vs LAN
deployments Hardware
loT/Cloud, edge/core Mobile vs fixed Dedicated vs shared

Specific vs mainstream Storage classes

Dynamic vs close to metal

Programming
environments and
languages

Global properties vs local actions

v l Heterogeneity in the data center
chist-era

Code doesn’t fit on one machine

All different

e/

| '
\. y

L Heterogeneity
chist-era in high-performance computing

+* Different hardware
X Multicores vs GPU vs FPGAs

» Complexities for programming
X Many programming models

+»* Discrepancies
X Between engineers’ common skills and available toolsets

x Between HPC tools and Big Data tools

L Heterogeneity in
chist-era large-scale distributed systems

+*»* Failure models and availability guarantees
x Mobile vs fixed
x Shared vs dedicated
X Single-purpose vs generic

*»» Different APIs, different programming models & runtimes

+*»* Discrepancies in non-functional properties
x QoS, resilience, ...

L

Call’s expected outcome

chist-era
HPDCJ DIVIDEND DIONASYS

Programming Model v v v
Dependability v
Data Management \/ \/ \/
Optimisation V4
Techniques
Versatility v v
Distributed v v v

Techniques

L

. DIVIDEND
chist-era

“* Vertical integration ﬁ T
“* Programming model e — %
“* Energy accounting e §
%* Auto tuning :
“* More heterogeneity

** Fast networks

start = d->model->index(0

skipRow = false;
eyboardTimewasvalid = d
keyboardInputTimeELaps
search.isEmpty() || !'keyb
|| keyboardInputTimeElaps
d->keyboardInput = search
skipRow = currentIndex().
} else {

d->keyboardInput += searc
}

Prototypes Open Sourced

Already saving 22% energy

L

HPDC(]
chist-era

High Performance Computing
** Parallel distributed computing in Java

v'PCJ library for parallel computing in Java

** Scalability up to 200.000 cores
** CPU and GPGPU
** Fault Tolerance

** Easy for non expert programmers

v'New approach to teach students

L

chist-era

DIONASYS

**» Adaptive Overlay Networks
v’ Systems of systems
v Multi-site Clouds

v Mobile heterogeneous systems

+»» Self-organization
v Robustness

+*** Declarative construction
v Programming models

*»» Co-adaptation of application and network layers
v’ Intent-driven networking and emergent overlays

L A few realization highlights

chist-era
HPDCJ DIVIDEND DIONASYS
Programming Model V4 V4
Dependability

Data Management

Optimisation
Techniques

Versatility

Distributed
Techniques

L

chist-era

Realization 1: PCJ library for parallel
programming in Java (HPDC]J)

¢ PCJ scales up to 200,000 cores
*** Graph500 implementation in Java with PCJ

+*»* Paralelization of the Genetic Algorithm
v’ Scalability up to 1,500 cores

+*»* Parallelization of the sequence alighment (PCJ-blast)
v’ Scalability up to 6,144 cores

¢ Parallelization of spare matrix multiplications

v’ Scalability up to 100 cores
*** Integration with JCuda (GPU use)
** Streaming library developed

¢ | Realization 2: Cross-Stack Energy Savings

chist-era (DIVIDEND)
2N

Application

| |

Compiler and Runtime Heuristics

*** Vertical integration

*** Programming model

*** Energy accounting

Distributed HSA

-
Architecture Data Movement

ertEcal Elﬁergg Acccjun ting]

** Auto tuning

*** More heterogeneity
*** Fast networks

QModelIndex start;
(currentIndex().isvalid())
start = currentIndex();

start = d->model->index(0

bool skipRow = false;
bool keyboardTimeWasvalid = d
11nt64 keyboardInputTimeElaps
DHSA Prototypes Open Sourced rarch dspty) 111y
|| keyboardInputTimeElaps
d->keyboardInput = search
skipRow = currentIndex().
} else {
d-=keyboardInput += searc

}

Already saving 22% energy

L Realization 3: Declarative complex
chistera = overlays with PLEIADES (DIONASYS)

Config file Many nodes

Initial State 2 rounds 6 rounds: converged

L

chist-era

Reflecting on the expected impact

Expected impact

Build a community

Integrate HW and
SW

performance,
optimisation, (...)

reliability, fault
tolerance (...),

energy efficiency

new technologies
and services

Highlights of how the three projects achieved this

Exploitation of results for teaching and training purposes
Submission of H2020 projects including industry
Standardization efforts

Solutions for co-design of distributed apps., APIs and network interfaces
Adaptive network overlays for multi-site clouds

Greatly improved scalability for Java HPC programming
Easier-to-use solutions for code acceleration in heterogeneous data centers

Self-organizing solutions for declarative overlay networks
Addition of fault-tolerance capabilities to the PCJ library

Energy monitoring mechanisms across entire data center stacks
Emergent overlays for heterogeneous mobile networks

Applications of full-stack optimization to machine learning frameworks
Applications of overlay adaptation techniques to microservices-based apps.

L

Upcoming challenges and needs
chist-era

¢ HDC call very much on-topic

* Heterogeneity issues highlighted in the call getting
increasing attention in science and technology communities

+** Distributed systems are (and will continue to get) more and
more complex

* Need programming models for the ordinary engineer
» Software engineering research to the rescue?

= Link with DevOps, microservices, etc.
= How are startups doing?

*+» HPC & Big Data convergence

 HPC models for multiprocessors not amenable to
heterogeneous computing platforms and accelerators

= Clear need in Machine Learning!

L

ossible roadmap
chist-era

*** In 5 Years we need
v Programming models for major domains
v DSLs to specialize to all devices (CPU, GPGPU, FPGA)

v’ Application placement, network topology and performance
need to be transparent to applications

*** In 10 Years we need
v Distributed languages for the masses

v’ Toolchains to co-design platforms and fabricate
logic/network/memory blocks for services

L Role of the CHIST-ERA support
chist-era

** Application-level revolutions start with systems’ progress

v Machine learning revolution due to GPUs, accelerators,
large-scale data centers...

v Cloud service model thanks to virtualization

v’ Pervasive computing and loT due to progress in mobile
computing, embedded systems...

+*»» 2018 call Topic 2. Intelligent Computation for Dynamic
Networked Environments

v Programming models for edge/fog/ambient computing will
lead to novel computations

L

chist-era _

Questions ?

