
CHIST-ERA	Projects	Seminar
Topic	Heterogeneous	Distributed	

Computing
Projects HPDCJ, DIVIDEND and DIONASYS

Paris, April 12th, 2018



Heterogeneity	everywhere

Hardware
Distributed 

deployments

Programming 
environments and 

languages

CPU vs GPU

Memory types 

Storage classes

WAN vs LAN

Dedicated vs shared

Dynamic vs close to metal

Global properties vs local actions

Specific vs mainstream

Specific vs mainstream

Mobile vs fixedIoT/Cloud, edge/core

Storage services



Heterogeneity	in	the	data	center

Code doesn’t fit on one machine

All different

Even different
interconnect



Heterogeneity	
in	high-performance	computing

v Different hardware
x Multicores vs GPU vs FPGAs

v Complexities for programming
x Many programming models

v Discrepancies
x Between engineers’ common skills and available toolsets
x Between HPC tools and Big Data tools



Heterogeneity	in	
large-scale	distributed	systems

v Failure models and availability guarantees
x Mobile vs fixed
x Shared vs dedicated
x Single-purpose vs generic

v Different APIs, different programming models & runtimes

v Discrepancies in non-functional properties
x QoS, resilience, …



Call’s	expected	outcome

HPDCJ DIVIDEND DIONASYS

Programming Model ✓ ✓ ✓
Dependability ✓
Data Management ✓ ✓ ✓
Optimisation
Techniques

✓
Versatility ✓ ✓
Distributed 
Techniques

✓ ✓ ✓



DIVIDEND

vVertical integration
vProgramming model
vEnergy accounting
vAuto tuning
vMore heterogeneity
vFast networks

Prototypes Open Sourced
Already saving 22% energy



High Performance Computing
vParallel distributed computing in Java

üPCJ library for parallel computing in Java

vScalability up to 200.000 cores
vCPU and GPGPU
vFault Tolerance

vEasy for non expert programmers
üNew approach to teach students

HPDCJ



DIONASYS

v Adaptive Overlay Networks
ü Systems of systems
üMulti-site Clouds
üMobile heterogeneous systems

v Self-organization
üRobustness

v Declarative construction
üProgramming models

v Co-adaptation of application and network layers
ü Intent-driven networking and emergent overlays 

Lancaster, UK

Bordeaux, FR

Cluj-Napoca, RO

Neuchâtel, CH

controllers
BOR

LAN

NEU

CLU

Figure 12: Bandwidth overhead of

PLEIADES over the shape building

protocol, per node, per round (20

shapes, 25,600 nodes). Both peak once

all views have stabilized, and remain

below 1kB (2kB in total).

Figure 13: Evolution of the bandwidth

overhead of PLEIADES (ratio) vs. the

number of basic shapes (25,600 nodes,

stable state). PLEIADES’s overhead re-

mains very small even for 50 basic

shapes (< 2kB in absolute value).

Figure 14: PLEIADES’s convergence

time after half of the nodes have

crashed, and after re-injecting new

nodes (4 connected rings, note the log

x axis). PLEIADES’s stabilization speed

is logarithmic in the system’s size.

(a) Half the nodes crash (represented
with a dashed line). The topology is
completely broken.

(b) After 3 rounds it’s back in shape.

0

32

3

27

4

128
5

24

11

2

41

9
59

12

6 7

8

57

61

78

19

80

10

43

15

16

13

47

25

14

17

1820

21

22

23

55
87

77

69

83

26

29

30 31

33

34

66

36

63

39

35

40

37

38

93

46

91

95

48

42 44

45

51

49
81

50

86

53

52

54

56

58
62

60
64

65

67

68

99

97

70

7273

71

74

75

76

84

79

82

88 89

85
90

92

94
96

98

(c) After reinjecting the crashed
nodes, the shape is messy.

(d) But after just 3 rouds it’s back
at the original target, even faster than
during the initial bootstrap phase.

Figure 15: Resilience and self-repair after dramatic crash or large node injection.

consider how it reacts when heavily stressed. We used two
scenarios: first, a dramatic crash where about half the nodes
shut down (paragraph IV-D1); second, an on-the-fly reconfig-
uration of the target topology, changing the number of basic
shapes in the system (paragraph IV-D2).

1) Dramatic crash: PLEIADES is extremely resilient, even
in presence of catastrophic failures. To analyze this, a con-
figuration with 4 shapes is deployed over different number of
nodes, and stressed with various dramatic events, as illustrated
in Figure 15.

At first, we let the system converge as in the previous ex-
periments. Then, we make each node crash with a probability
p = 0.5, resulting in half the nodes crashing simultaneously
on average and a totally broken topology (15a), and we let
the system converge towards the new resulting target topology
(15b). Finally, we simultaneously inject as many nodes as
crashed earlier (15c) and we let the system converge back to
the original target topology (15d). We consider two modes of
reparation, either restoring crashed nodes to their last known
state with a back-up, or providing new blank nodes initialized
with random neighbors.

At each step, we measure the convergence time in rounds.

For this experiment, we consider the system as a whole
is converged when all the criteria in subsection IV-C2 are
satisfied. Figure 14 shows the results: as shown previously,
the initial convergence is quite fast and grows logarithmically
with the number of nodes in the system: around 10 rounds
even for very large systems of 20,000+ nodes.

But more importantly, both the self-repair after the crashes
and the return to the original target are even faster than the
initial convergence, even with such a dramatic rate of failure
as we chose: they converge 2 to 5 rounds faster Indeed, the
nodes that are still on-line don’t start with the same blank state
as for the initial convergence, and this additional information
more than compensate the stress caused by the crashes or re-
injection, and enables the system to converge extremely fast.

2) Dynamic Reconfiguration: We argued that PLEIADES
would help composing complex systems-of-systems and pro-
mote re-using previous works. But that means PLEIADES will
need to be deployed to real systems that do not start in a
random state.

We tried to dynamically reconfigure a system that was
already deployed and converged to a stable state. For that, we
need to define a reconfiguration policy that maps the relation



HPDCJ DIVIDEND DIONASYS

Programming Model ✓ ✓ ✓
Dependability ✓
Data Management ✓ ✓ ✓
Optimisation
Techniques

✓
Versatility ✓ ✓
Distributed 
Techniques

✓ ✓ ✓

A	few	realization	highlights



Realization	1:	PCJ	library	for	parallel	
programming	in	Java	(HPDCJ)

v PCJ scales up to 200,000 cores

v Graph500 implementation in Java with PCJ

v Paralelization of the Genetic Algorithm

ü Scalability up to 1,500 cores
v Parallelization of the sequence alignment (PCJ-blast)

ü Scalability up to 6,144 cores
v Parallelization of spare matrix multiplications

ü Scalability up to 100 cores
v Integration with JCuda (GPU use)

v Streaming library developed



Realization	2:	Cross-Stack	Energy	Savings	
(DIVIDEND)

vVertical integration
vProgramming model
vEnergy accounting
vAuto tuning
vMore heterogeneity
vFast networks

DHSA Prototypes Open Sourced
Already saving 22% energy



Realization	3:	Declarative	complex	
overlays	with	PLEIADES	(DIONASYS)

Initial State 2 rounds 6 rounds: converged

Config file Many nodes

0

21

1

14

32

20

6

12

7

56

2

59

11

48

51

313

10

47

4

18

33

5

16

8

9

30

61

15

17

19

85

80

54

65

22

53

23

58

66

24

25

26
71

79

27

28

89

60

29

31

34

83

77

90

35

78

39

74

70

36

49

63

41
69

37

38

46

42

40

67

94

43
44

45

95

50

93

5264

55

57

62

68

72 88

97

82

73

81

75

96

8676

84

87

92

91

98

99

0
17

28

29

19

85

110 21
5

15

2

41

20

22

50
44

33

23

3

27

32

4

11

24

12

31

6

18

7

25

13

9

8

16

14

30

26

77

89

34

36

63

56

52

35
45

59

60

55

65

37

38

49

39

67

40

42

88

64

82

94

54

43 61
57 51

46

58

66

47

53

48

62

68

87

90

71

75

69

74

95

97

93

70

79

91

78

83

72

92

73

81

86

99

98

76

84

96

80

0

89
17

31

85

80

29

19

5

6

1
10

21

15

2

41

20

11

50 44

33

26
32

3

4

12

23

24

18

7

25

13

9

8

16

14

22

30

77
27

28

34
36

63

56

66

3545

59
60

55

65

37
39

38

49

40

67

42

88

64

82

94

54

43 61

51

46

52

58

47

53

48

62

57

68

87

90

71

75

69

97

95

74

98

93

70

79

91

78

83

72

92

73

81

86

76

84

99

96



Reflecting	on	the	expected	impact

Expected impact Highlights of how the three projects achieved this

Build a community Ø Exploitation of results for teaching and training purposes
Ø Submission of H2020 projects including industry
Ø Standardization efforts

Integrate HW and 
SW

Ø Solutions for co-design of distributed apps., APIs and network interfaces
Ø Adaptive network overlays for multi-site clouds

performance, 
optimisation, (…)

Ø Greatly improved scalability for Java HPC programming
Ø Easier-to-use solutions for code acceleration in heterogeneous data centers 

reliability, fault 
tolerance (…),

Ø Self-organizing solutions for declarative overlay networks
Ø Addition of fault-tolerance capabilities to the PCJ library

energy efficiency Ø Energy monitoring mechanisms across entire data center stacks
Ø Emergent overlays for heterogeneous mobile networks

new technologies 
and services

Ø Applications of full-stack optimization to machine learning frameworks
Ø Applications of overlay adaptation techniques to microservices-based apps.



Upcoming	challenges	and	needs

v HDC call very much on-topic
• Heterogeneity issues highlighted in the call getting 

increasing attention in science and technology communities
v Distributed systems are (and will continue to get) more and 

more complex
• Need programming models for the ordinary engineer
• Software engineering research to the rescue?

§ Link with DevOps, microservices, etc.
§ How are startups doing?

v HPC & Big Data convergence
• HPC models for multiprocessors not amenable to 

heterogeneous computing platforms and accelerators
§ Clear need in Machine Learning! 



Possible	roadmap

v In 5 Years we need
üProgramming models for major domains 
üDSLs to specialize to all devices (CPU, GPGPU, FPGA)
üApplication placement, network topology and performance 

need to be transparent to applications
v In 10 Years we need

üDistributed languages for the masses
ü Toolchains to co-design platforms and fabricate 

logic/network/memory blocks for services



Role	of	the	CHIST-ERA	support

v Application-level revolutions start with systems’ progress
üMachine learning revolution due to GPUs, accelerators, 

large-scale data centers…
üCloud service model thanks to virtualization 
üPervasive computing and IoT due to progress in mobile 

computing, embedded systems…

v 2018 call Topic 2. Intelligent Computation for Dynamic 
Networked Environments
üProgramming models for edge/fog/ambient computing will 

lead to novel computations



Questions

Questions ? 


