

# CHIST-ERA Projects Seminar Topic AMCE – Adaptive Machines in Complex Environments

Paris, April 11-12, 2018





# Presentation of topic

#### Autonomy

- AdaLab, COACHES, ALOOF
- Complex environments
- AdaLab, COACHES, ALOOF
- Project overlap
- Major outcomes and achievements
- AdaLab, COACHES, ALOOF
- Remaining challenges and needs
- Potential sources of further funding



# Adaptive Machines in Complex Environments – AMCE

- AdaLab: Adaptive Automated Scientific Laboratory
  - http://www.chistera.eu/projects/adalab
  - Brunel University, University of Manchester, University Paris-Nord, University of Evry-Val-d-Essonne, KU Leuven
- COACHES: Cooperative Autonomous Robots in Complex and Humans Environments
  - http://www.chistera.eu/projects/coaches
  - University of Caen Basse-Normandie, Sapienza University of Rome, Vrije Universiteit Brussel, Sabanci Universitesi
- **ALOOF**: Autonomous Learning of the Meaning of Objects
  - http://project.inria.fr/aloof
  - Sapienza University of Rome, University of Birmingham, TU Wien, Inria



# Autonomy - AdaLab

Computer systems capable of originating their own experiments, physically executing them, interpreting the results, and then repeating the cycle.





### **Autonomy - COACHES**

- Monitoring the environments
- Interacting with people
- Distributed planning for
  - Accomplishing tasks:
     assistance, escort and support security units
- Robust navigation in crowded environments



**SERVICES** 

**SOFTWARE** 

**ROBOTS** 



### **Autonomy - ALOOF**

How does a robot know it doesn't know?

How to extract from the Web information useful for a robot, from a robot query?



How to use such information to build a semantic object map?

How to bridge between the Web representations and the own robot representation?



### **Environment - AdaLab**





### **Environment - COACHES**









### **Environment - ALOOF**















# **Project Overlap**

#### Knowledge representation

- AdaLAB: set of ontologies that describes meningful components of the lab environment + logical models of the application domain
- COACHES: logical models describing the components of the environment + human behaviour
- ALOOF: semantic database of objects relations (e.g. is a, used for) + 2D and 3D visual features extracted from images

#### **❖** Probabilistic reasoning about an uncertain environment

- AdaLAB: Bayesian reasoning over biological networks
- COACHES: Bayesian and particle filters for human behaviour
- ALOOF: Probabilistic reasoning scheme on object relations + Deep Learning for object recognition



# **Project Overlap**

#### Human computer interactions

- AdaLAB: dedicated communication mechanism
- COACHES: multimodal interface and language for interaction templates
- ALOOF: no direct human interaction apart from the assignment of an initial task

#### Planning – partial information, constraints

- AdaLAB: experiment planning
- COACHES: distributed markov decision process for task sharing and planning
- ALOOF: detection of knowledge gaps, comparing existing knowledge with new situations



# Major outcomes and achievements - AdaLab

- Integrated Autonomous System for Scientific Research
- Three novel machine learning systems for generating scientific hypotheses.
- Two novel AI systems for deciding on scientific experiments.
- Significantly improved biological models about cancer and ageing.



# Major outcomes and achievements - COACHES

- Distributed decision making and reasoning techniques for joint and collaborative activities
- Multi-modal human-robot interaction
- Robust Multi-Robot systems for public spaces (transfer from malls to hospitals)
- Long-term autonomy



# Major outcomes and achievements - ALOOF

Automatic creation of a perceptual and semantic knowledge base for robots on demand, from the Web

#### Databases

- OSD Object Segmentation Database
- ARID Autonomous Robot Indoor Dataset (ICRA 2018)
- DEKO Default Knowledge of Objects, type, room, relations, action and affordances

#### **❖** Tools

- MORSE robot simulation: generation of the spatio-temporal dynamics of everyday objects
- Software library for semantic segmentation, ROS
- View planning, crowd-based labelling and unknown object inference: integrated in STRANDS project
- http://strands.readthedocs.io/en/latest/index.html
- KNEWS, a pipeline of NLP that outputs frame-based knowledge



# Remaining challenges and needs / Roadmap

#### Planning – partial information, constraints

- Representation of default knowledge and common sense knowledge
- Unplanned and conflicting situation
- Collaborative, multi-agent planning with partial information

#### Human-robot knowledge building and sharing

- Collaborative Knowledge discovery
- Fusion of heterogeneous sources of information
- Adjustable and Adaptive autonomy (under certified limits)

#### Understanding and Interpretation of information

- Scene understanding: relate object to environment and people behaviour
- Interpretation of models, making sense of data
- Object functions, object-to-object relations, object-parts-relations, articulated and deformable objects



# Potential sources of further funding

- Identify potential sources of further research funding
  - ✓ CHIST-ERA
  - ✓ Industry
  - √H2020 (identify calls)
  - **✓** Others



# **Questions?**