

CHIST-ERA Projects Seminar Topic AMCE

Fabio M. Carlucci Brussels, March 22-23, 2017

Presentation - Adaptive Machines in Complex Environments (AMCE)

- *****Complex environments
 - AdaLab, COACHES, ALOOF
- *Autonomy
 - AdaLab, COACHES, ALOOF
- Project overlap
- Major outcomes and achievements
 - AdaLab, COACHES, ALOOF
- *Remaining challenges and needs

Projects

- **◆** AdaLab: Adaptive Automated Scientific Laboratory
 - http://www.chistera.eu/projects/adalab
 - ◆Brunel University, University of Manchester, University Paris-Nord, University of Evry-Val-d-Essonne, KU Leuven
- **◆**COACHES: Cooperative Autonomous Robots in Complex and Humans Environments
 - http://www.chistera.eu/projects/coaches
 - ◆ University of Caen Basse-Normandie, Sapienza University of Rome, Vrije Universiteit Brussel, Sabanci Universitesi
- **◆**ALOOF: Autonomous Learning of the Meaning of Objects
 - http://project.inria.fr/aloof
 - ◆ Sapienza University of Rome, University of Birmingham, TU Wien, Inria

Environment - AdaLab

Environment - COACHES

Environment - ALOOF

Autonomy - AdaLab

Computer systems capable of originating their own experiments, physically executing them, interpreting the results, and then repeating the cycle.

Autonomy - COACHES

- Monitoring the environments
- Interacting with people
- Distributed planning for
 - ✓ Accomplishing tasks: assistance, escort and support security units
- Robust navigation in crowded environments

SERVICES

SOFTWARE

ROBOTS

Autonomy - ALOOF

How does a robot knows it doesn't know?

How to extract from the Web information useful for a robot, from a robot query?

How to use such information to build a semantic object map?

How to bridge between the Web representations and the own robot representation?

Project Overlap

- Knowledge representation
- *Probabilistic reasoning about an uncertain environment
- Human computer interactions

Planning - partial information, constraints

Major outcomes and achievements - ALOOF

- Automatic creation of a perceptual and semantic knowledge base for robots on demand, from the Web
- Large-scale, long term autonomous semantic mapping of space

Major outcomes and achievements - COACHES

- Knowledge-based environment modeling
- Distributed decision making and reasoning techniques for joint and collaborative activities
- Multi-modal human-robot interaction
- Face detection and body tracking
- Physical implementations in real and different environments

Major outcomes and achievements - AdaLab

- Integrated Autonomous System for Scientific Research
- Three novel machine learning systems for generating scientific hypotheses.
- Two novel AI systems for deciding on scientific experiments.
- Novel biological knowledge about cancer and ageing.

Remaining challenges and needs

- Planning partial information, constraints
 - Representation of default knowledge
 - Unplanned and conflicting situation
 - Collaborative, multi-agent planning with partial information
- Human-robot knowledge building and sharing
 - Collaborative Knowledge discovery
 - Fusion of heterogeneous sources of information
 - Adjustable autonomy

Questions?