CHIST-ERA Projects Seminar
Cross Topics
SPTIoT

Gareth Howells

Paris, April 12th, 2018
User-Centric Security, Privacy and Trust in the Internet of Things (SPTIoT)

- Methods for data anonymisation
- Technical mechanisms to increase trustworthiness when data is shared between different providers
- Intrusion detection methods
- Authentication using trusted computing (lightweight hardware and software security)
- Dynamic security to allow systems to adapt to varying users
- Data visualisation for increasing user awareness of privacy issues
- Empowering users with risk evaluation tool for their data and contacts;
- Assistive technology/techniques to encourage more secure behaviour and awareness of users
SPIRiT: Security and Privacy for the Internet of Things

• Enhance trust and integrity of IoT technology
• Address lack of user confidence in the technology
• Specifically
 • How to ensure data originates from claimed device?
 • How to ensure it has not been altered?
 • How to ensure users comply with security requirements?
 • How to ensure the solution is easy and cheap to deploy?
 • How to ensure system may evolve to changing requirement?
SPIRiT: Security and Privacy for the Internet of Things
UPRISE-IoT (SUPSI, INRIA, EURECOM, UCL)

- Goal: UPRISE-IoT's goal is to let the users gain awareness and control over data generated and collected by the IoT devices surrounding her.

- Create models for describing the current context of the IoT devices

- Create novel strategies to secure IoT.

- Develop tools that will empower users in IoT.

- Increase the user’s awareness.
Current works:

- To understand how much knowledge can be inferred about a target user by analyzing others' available information.
- Designing protocols for secure bootstrap and data management in IoT.
- Study in data leakages caused by third party libraries in smart devices.
- Implementation of a visual registry for the smart city: Map of Things.
- Study the changes in perception and behavior of different subjects when confronted with the data leakage on their smart devices.
- Development of a framework for interpretable machine learning from personal data (in particular mobile and social media data).

http://uprise-iot.supsi.ch/
IoT problem areas:
• identification/authentication of constrained IoT devices
• scalability problems

Technologies:
• (optical) PUFs, quantum readout
• approximate nearest neighbor search
• scalable signal processing
IDentification for the Internet Of Things: Results so far

• Privacy preserving protocols based on random projections with sparse vector representation and ambiguisation [1,2].
• Similarity search in high-dimensional spaces [3].
• Security analysis of QSA-related protocols [4,5].

Publications

 B. Razeghi, S. Voloshynovskiy, D. Kostadinov, O. Taran.

 B. Razeghi, S. Voloshynovskiy.

 D. Leermakers, B. Škorić.

 D. Leermakers, B. Škorić.
 https://eprint.iacr.org/2017/830
USE-IT

- **USE-IT:** User empowerment for Security and privacy in Internet of Things (http://useit.eu.org)

- **Objective:**
 To let users and devices easily and tightly control who has access to which data in which context, without leaking collateral information such as location or behaviour data.

- **Partners:**
 - IBM Research – Zurich, CH
 - University of Murcia, ES
 - Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), FR
 - Technical University Eindhoven (TUE), NL:
USE-IT Technology

Smart buildings
- Combine symmetric crypto with CP-ABE for scalability, efficiency and flexibility
- Bridge incident response (reactive) and CP-ABE (preventive) by integrating IDS

Geo-zone encryption for location privacy in C-ITS
- Unlimited pseudonyms by Privacy-ABCs
- Security against passive eavesdropping by encryption
Overview/Main Goals: SUCCESS, Secure Accessibility for the IoT

- Formal design of privacy-critical IoT scenario
- Risk visualisation by attack tree analysis
- Certified implementation for IoT component architectures
- IoT Pilot scenario: sensor based monitoring for Alzheimer’s patient
uccess

Achievements
- Pilot infrastructure
- Pilot architecture
- Attack tree analysis

Roadmap/Vision:
- S&P-certified IoT Healthcare monitoring system
- Reproducable process to instantiate similar certified systems for use in healthcare (Knowledge Transfer)
- User Transparency: Visualisation of Attack Trees

Challenges:
- Reach out to stakeholders to validate vision
- IoT devices (sensors) are off-the shelf, not open-source, not suitable for code generation
Upcoming challenges and Roadmap

- How to exploit complementarities of each project
- Availability of solutions
- What should we integrate?
- Common dissemination?
 - ✔ Special session in conference?
Role of the CHIST-ERA support

- Smaller and more focus within the projects
- Annual meetings allow better collaboration
- More direct contact with support staff
- Allows incorporation of more diverse set of researchers
- Integrates partners from each country because of fixed funding per country
- Focus on international project on basic research
Questions

Questions ?