

# CHIST-ERA Projects Seminar Topic Human Language Understanding – Grounded Language Learning

*Katrien Beuls*Paris, April 12, 2018





## Introduction: Topic description

## ❖ The goal:

✓ Ground language learning in the perceptual, emotional and sensorimotor experience of the system

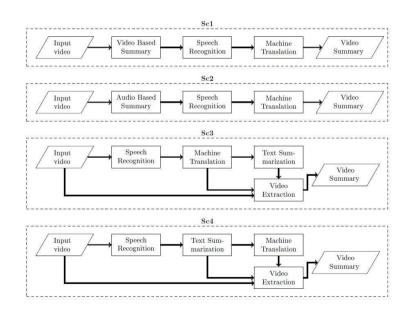
## **Why:**

✓ To model high-level, semantic & pragmatic knowledge in a robust way, from varied data, considering situational context

## **How:**

- ✓ Multidisciplinary approach: combine human language processing with related fields such as developmental robotics or cognitive science.
- ✓ Evaluation
  - Well defined metrics and protocols to measure progress




## Introduction: 6 Projects of the topic

- \* AMIS (AGH Poland, DEUSTO Spain, LIA France, LORIA France)
- \* ATLANTIS (VUB Belgium, LATTICE France, OFAI Austria, SONY France, UPF Spain)
- ❖ IGLU (UMONS Belgium, Lille1 & INRIA Bordeaux France, UNIZAR Spain, KTH Sweden, MILA Umontréal & Usherbrooke Québec)
- \* M2CR (CVC Barcelona Spain, LIUM Le Mans France, MILA UMontréal Québec)
- ❖ MUSTER (ETH Zurich (CH), KU Leuven (BE), University of the Basque Country (SP), Sorbonne Universite (FR))
- ReGROUND (KU Leuven Belgium, Koç University Turkey, Örebro University Sweden)



# Access Multilingual Information opinionS (AMIS)

- Partners: LORIA (France), AGH (Poland), DEUSTO (Spain), LIA (France)
- Challenge:
  - ✓ Understanding a foreign video by summarizing



**Different Architectures for AMIS** 

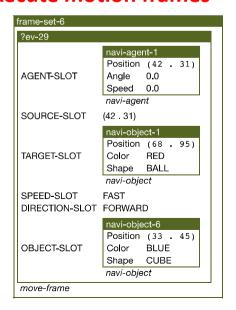


## A summarized Video subtitled in English

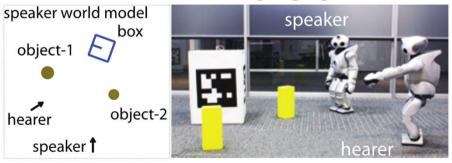




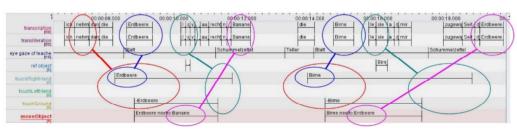
# Artificial language understanding in robots (ATLANTIS)


## Synthesize the major transitions in the emergence of languages using agent-based computational models

Object reference scenario: draw attention to objects and/or their properties and spatial relations


**Spatial reference scenario**: describe a particular path of

movement


#### **Execute motion frames**



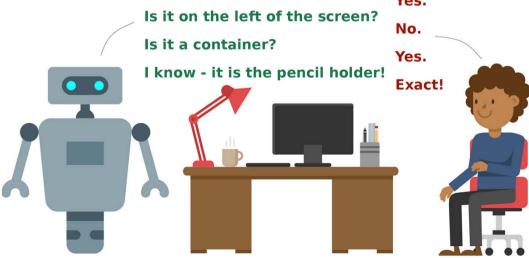
#### **Grounded language games**



#### Multi-modal task description corpus






# Interactive Grounded Language Understanding (IGLU)

Language learning and grounding through dialogue and interaction in multimodal environments.

- Goal-oriented visual and dialogue tasks (GuessWhat?!).
- ❖ Evaluation frameworks of language-learning cognitive agents for dialogue (HoME – 3D multimodal simulator) and incremental learning (Multimodal Human Robot Interaction dataset).
- Integration of developed algorithms on multiple humanoïd robotic platforms.

  Is the object on the table?

  Yes.



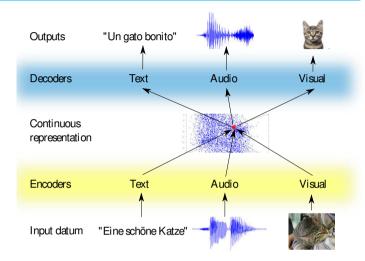


## M2CR: Multimodal Multilingual Continuous Representations for HLU

## ❖ Goal

- ✓ Design a unified deep architecture
- √ Address major HLU tasks
- ✓ Multiple languages and modalities

## **Achievements:**


- ✓ Pure neural MT, ASR and SLU systems
- √ Image to image translation (sharing encoders and decoders)
- ✓ Multimodal Machine Translation and Image description

## Ongoing:

✓ Multi-task systems using multiple modalities

#### Next:

- √ Corpus targeting specific (linguistic or visual) aspects (e.g. gender agreement)
- ✓ Integrate encoders and decoders into a single NN
- Partners: CVC (Barcelona, Spain), LIUM (Le Mans, France), MILA (Montreal, Québec)

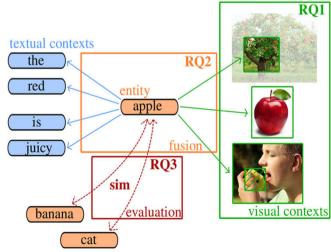




## MUSTER

## chist-era

KU Leuven (Be), ETH Zurich (Ch), SU – Paris (Fr), U. Basque Contry (Spain)


- ❖ MUSTER Multimodal processing of Spatial and Temporal ExpRessions
  - ✓ Multi-modal embeddings for text (word & sentence level)
  - ✓ Understanding & evaluation for various HLU tasks

#### Main results so far

- ✓ Multimodal word representations leveraging images (context, appearance, spatial information)
- ✓ Multimodal tasks (e.g. visual sentence similarity, query-biased video summary)
- ✓ Study of the properties of multimodal representations

## Valorisation

- ✓ 13 publications
- ✓ 4 Datasets produced for evaluating the quality of representations
- ✓ Tools (annotations, benchmarks, and models)



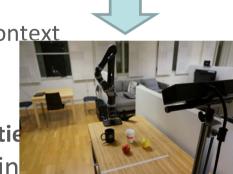


## Relational Symbol Grounding through Affordance learning (ReGround)

#### Main ideas

- ✓ Associate symbols in language with referents in an environment
- ✓ Goal: From Winograd's SHRDLU to the real world, here kitchen environment

## Distinctive features


- ✓ multi-modal input (perception and language)
- √ take into account the context & environment; multiple objects and their relationships
- ✓ build on a notion of affordance from robotics

potential actions in objects in the environmental context

## Results so far

- ✓ Anchoring + relational affordances
  - Link perception of physical world to object propertie
- ✓ Identification of position in NLP (symbol groundin)





Put the blue pyramid on the block in the box

Bring me the tea pot and the sugar



## Introduction: Projects of the topic

|          | Multi-modal | Multi-lingual | Physical<br>Robots | Actions | Relations | Open Data | Systematic<br>Evaluation |
|----------|-------------|---------------|--------------------|---------|-----------|-----------|--------------------------|
| AMIS     | ✓           | ✓             |                    |         |           | ✓         | ✓                        |
| Atlantis | ✓           |               | ✓                  | ✓       | ✓         | ✓         | ✓                        |
| IGLU     | <b>✓</b>    |               | ✓                  | ✓       | ✓         | ✓         | ✓                        |
| M2CR     | ✓           | ✓             |                    |         |           | ✓         | ✓                        |
| Muster   | ✓           |               |                    | ✓       | ✓         | ✓         | ✓                        |
| ReGround | ✓           |               | ✓                  | ✓       | ✓         | ✓         | ✓                        |



## What we learned so far

- At the beginning we were looking to very wide solutions and approaches but realized that we had to focus on more specific goal oriented tasks
- CHIST-ERA HLU created a new research community [HLU-master class 10-11 April 2018, ~ 10 workshops + others planned]
- ❖ 3 years is short we would like to find a way to keep the HLU community alive.



## Produced databases

- \* AMIS: Video database, 3 languages, 300 hours (100 per langage)
- \* ATLANTIS: Manual annotation of multimodal task description
- IGLU: 3 databases and 1 3D multimodal simulator
- M2CR: 1 multilingual, multi-modal (image and text descriptions in 4 languages)
- MUSTER: Dataset on spatial similarity for word pairs, Webimage dataset (2.5 M images), visual Word Sense Disambiguation, Visual semantic textual similarity
- ReGROUND: 2 artificial data generators for instruction following (infinite)



## Upcoming challenges and needs (1/3)

## Scientific challenges & needs

- ✓ How to combine low level neural approaches with higher level reasoning?
- ✓ Many current techniques need large amounts of data: how to address this challenge?
  - investigate techniques that only need few data ...
    - e.g: unsupervised / weakly supervised learning
- ✓ How to improve the transfer between modalities across different contexts?
- ✓ Evaluation is always a challenge



## Upcoming challenges and needs (2/3)

- Scientific challenges & needs
  - ✓ How to connect data to actions?
    - use data for action
      - e.g: anticipation, planning
    - use action for data acquisition
      - e.g: sensor planning, perception focus
  - ✓ How to evaluate an intelligent interactive system in real situations?
    - what are the performance metrics?
    - how can we define benchmarks?



## Upcoming challenges and needs (3/3)

- Organizational challenges & needs provide resources for:
  - ✓ Data
    - create bodies of annotated data
  - ✓ Evaluation
    - shared test facilities, standard challenges, evaluation campaigns
  - ✓ Common platform (hardware/software)
    - affordable, maintenable
  - ✓ Exchange data, software components, knowledge
    - Make public the outputs of the inititiative
      - Workshops, summer school, ...
      - HLU Website listing the facilities developed by the projects
        - e.g. data sharing, platforms produced by the partners



## Remaining challenges and needs - SWOT

## Strengths

- ✓ Large multimodal datasets are starting to be available usually developed by communities or large groups
- ✓ Deep Learning as a common framework for different modalities is convenient

#### Weaknesses

- ✓ Deep Learning is not enough
- ✓ Relevant multi-modal data not yet always available
- ✓ Copyright and distribution of corpora

#### Opportunities

- ✓ Needs from industry hopefully
- ✓ Common practices, component and data reuse, availability of data, software, computation
- ✓ Common representations for multi-modal phenomena
- ✓ Better perception and actuation hardware (robots)

#### Threats

- ✓ Ethics use of technology by companies
- ✓ Research driven by some companies



## Remaining challenges and needs

## Challenges

- ✓ Combining neural implementations and high-level reasoning
- ✓ Transfer knowledge from different contexts
- ✓ Incremental learning with limited data
- ✓ Integrating different approaches

## In progress

✓ Evaluation of the different systems that have been built in the projects



## Questions

## **Questions?**