

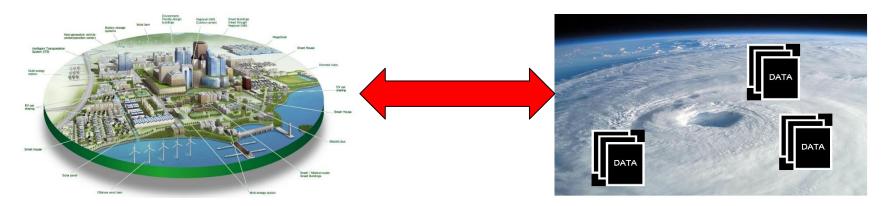
CONNECT COmmunicatioN-aware dyNamic Edge CompuTing

Sinem Coleri, Koc University Deniz Gunduz, Imperial College London Mehdi Bennis, University of Oulu

Why Machine Learning in B5G/6G?

- Communication and autonomy are intertwined ML/AI integral component of B5G/6G!
- Communication must be self-sustaining system must operate itself by itself: No rigid and human-made protocols!
- Communication should be proactive learn the user, system, machines dynamics/preferences, etc (beyond basic caching)!

Massive Data



- Massive volumes of data will be generated from sensors, wearables, surveillance cameras, etc.
- How to make sense of this hurricane of chaos?
- Analyze, predict, and adapt to the wireless user behavior, user-centric wireless (e.g., virtual reality)

Heterogeneous Sources of Data

Geo-location

Devices

Applications

Mobility patterns

People/social

People links

Social networks Surveillance

Demographics, preferences, etc.

Smartphones

Wearables

Smart meters

GPS data

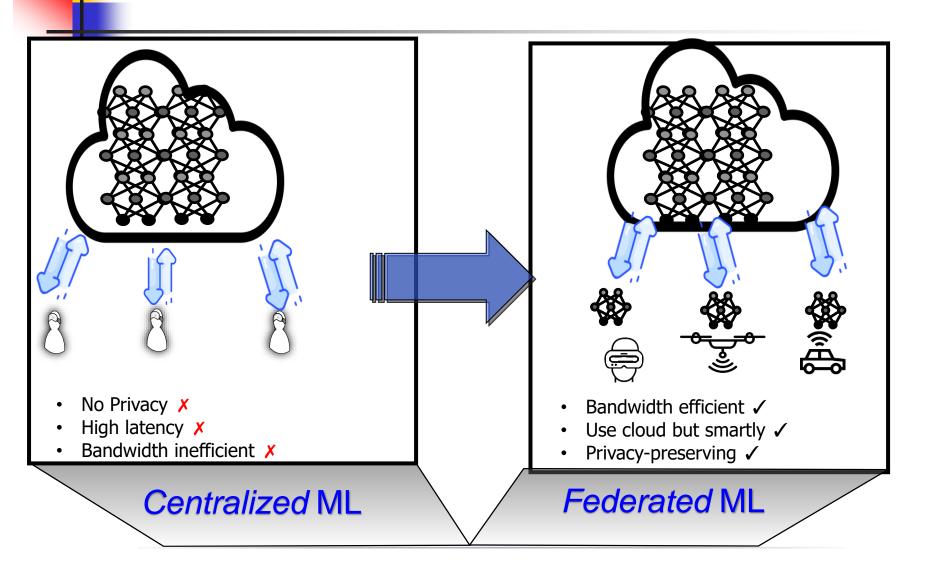
Monitoring

Drones

Air/water quality monitors

ML to combine to understand needs of wireless users, machines!

Centralized → Federated ML



- Develop novel caching, distributed computing and networking methodologies to enable federated/distributed learning taking into account network dynamics
- Apply developed joint computing, caching and communication framework to a hierarchical heterogeneous architecture for vehicular ad-hoc networks
 - Large-scale simulations
 - Small scale implementation platform consisting of two cars and a roadside unit at Koc University

Work Package 2

- WP2. Distributed ML at the Edge: This WP focuses on distributed/ federated ML considering both training and inference at the network edge, targeting heterogeneous vehicular use cases.
 - *T2.1. Distributed learning at the wireless edge* (1-18): This task focuses on distributed training among moving edge devices taking into account per-device data sample size, network topology, connectivity, latency and reliability constraints.
 - *T2.2. Distributed and reliable computing over-the-air* (12-36): This task investigates the fundamental problem of stragglers which can adversely undermine the learning process.
 - *T2.3. Hierarchical heterogeneous networking architecture for distributed learning* (1-24): This task focuses on the design of smart clustering algorithms (for the network nodes) and efficient handover mechanisms considering data generation characteristics and ultra-high reliability and low latency constraints of distributed ML.

Work Package 3

- WP3. Energy and age-optimal IoT data caching across dynamic networks: This WP will focus on where, when and how much sensor data must be stored across a dynamic network under storage and communication constraints. Particular attention will be paid to the "age of information" as it will identify the relevance of data for various learning tasks.
 - *T3.1. Coded caching of data and computations under energy and bandwidth constraints* (6-18): This task focuses on the design of novel coded caching and delivery techniques focusing on high volume sensor data, mainly targeting computation tasks, which may benefit from caching computations.
 - *T3.2. Reinforcement learning (RL) for age-optimal caching and delivery of sensor data across a dynamic network* (12 36): This task focuses on the design of distributed collaborative reinforcement learning (RL) algorithms to optimize the caching of sensor data and offloading of computation tasks.
 - *T3.3.* Age-optimal caching and delivery over hierarchical heterogeneous networks (19–24): This task will extend the caching and data access framework for distributed learning and computing developed in Tasks 3.1 and 3.2 to hierarchical and highly dynamic networks, such as VANETs.

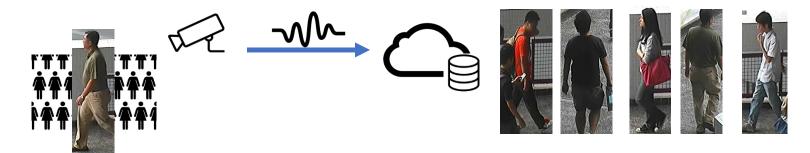
Work Package 4

- WP4. Software platform and testbed implementation: This WP will focus on building the collaborative software platforms for numerical simulations as well as the experimental testbed.
 - *T4.1.* Software platform for numerical simulation of distributed learning, caching and networking algorithms (1 36): This task will develop the software platform where all the distributed learning and caching algorithms will be tested.
 - *T4.2. Collection of requirements for caching and computing application* (1 6): This task focuses on the collection of communication and data generation characteristics of distributed computing and caching.
 - *T4.3. Wireless channel characterization for mobile VANETs* (7 18): This task focuses on the wireless channel modeling for VLC, IEEE 802.11p and cellular systems among moving vehicles and road side units under varying scenarios.
 - T4.4. Designing a hybrid communication architecture for mobile VANETs (19 30): This task focuses on the integration of VLC, IEEE 802.11p and cellular technologies on a hybrid transceiver architecture, targeting learning applications.
 - *T4.5.* Validation of vehicular networking for caching and computing applications (31 –36): This task focuses on the testing and validation of the performance of the developed algorithms on moving vehicles under various scenarios.

Imperial Team

- Extensive expertise in
 - Machine learning
 - Wireless communications
 - Information and coding theory
 - Optimization theory
 - Privacy / Security

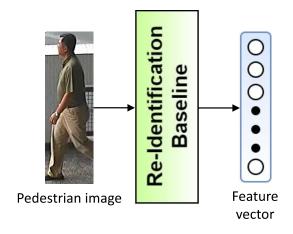
Image Retrieval at the Edge



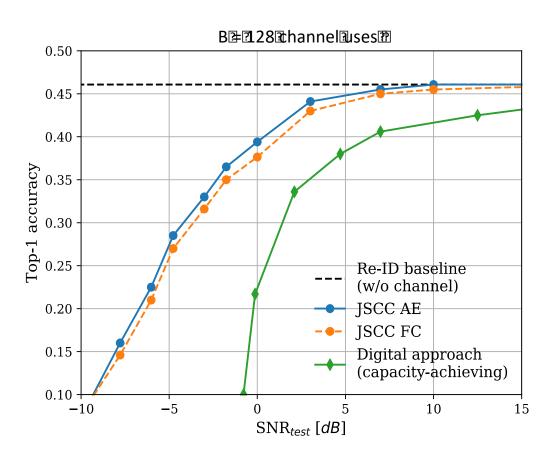
Goal: match a pedestrian's image from a wireless camera with another image in a large database

Standard approach:

- Transmit images to the cloud
- Determine features most relevant for reidentification over image database
- Re-ID baseline: Deep convolutional neural network, e.g., ResNet-50

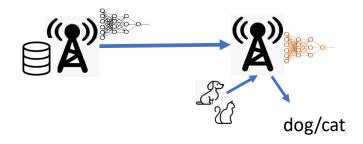


Person Re-identification over Noisy Channels



- CUHK03@dataset:@14096@ images@bf@1467@dentities@ taken@from@two@tamera@ views.@
- 256x128\textbf{toloured}\textbf{mages}

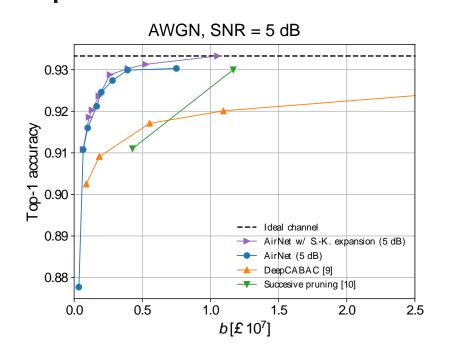
Neural Networks in the Air (AirNet)

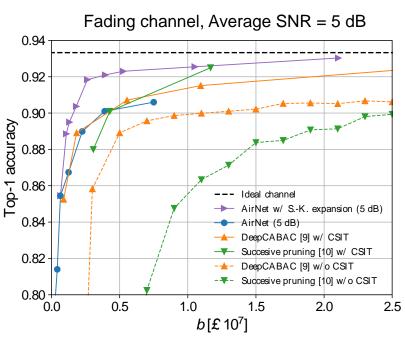


- Neural@networks@(NNs)@may@need@to@be@transmitted,@br@stored@bver@ossy@analog'@media@neuromorphic@hardware)
- Classification@vill@be@done@vith@he@noisy@NN
- Conventional@pproach:@Compress@NN@weights,@use@thannel@toding@against@errors
- Proposed pproach: Pruning for bandwidth deduction) hoise injection during training knowledge distillation

4

AirNet over AWGN Channels





- Small-VGG16ffor ICIFAR-10 Lassification
- Observation: Better 10 prune more, then 11 ntroduce dedundancy through SK napping

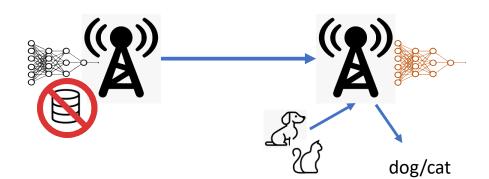
Denoising Noisy Neural Networks

$$r = w + z$$

- w:@heural@hetwork@parameters@
- z: Independent IGaussian Inoise Ivector
- Nodatadsavailablefordraining
- ML $\mathbf{\hat{w}}^{ML} = \mathbf{r}$
- Bayesian stimation
 - Assume $ext{Id}$ id Gaussian $ext{Iprior}$ for $ext{Ineq}$ two reparameters: $W \sim \mathcal{N}(W; \mu_w, \sigma_w^2)$

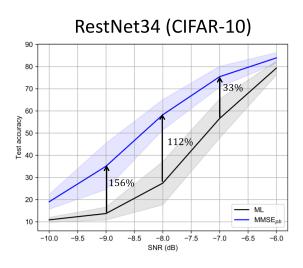
• Sample
$${\mathbb R}$$
mean:
$$\mu_w = \frac{1}{d} \sum_{i=1}^d w[i]$$

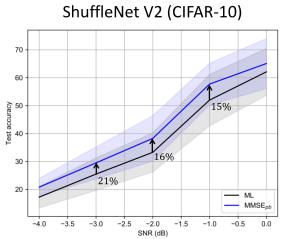
• Sample $\mathbb P$ ariance: $\sigma_w^2 = \frac{1}{d} \sum_{i=1}^d (w[i] - \mu_w)^2$

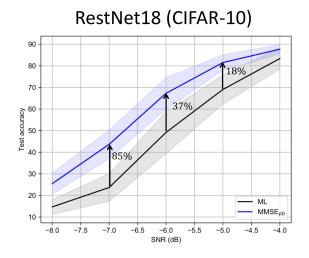


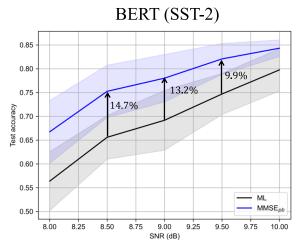
Shao, Liew and Gunduz, Denoising Noisy Neural Networks: A Bayesian Approach with Compensation, arXiv, May 2021.

Denoising Noisy Neural Networks

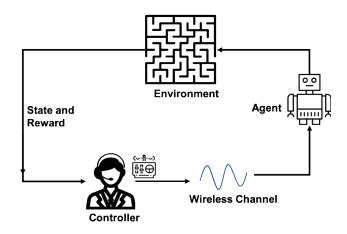








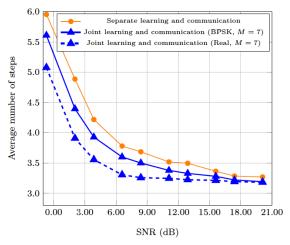
Remote-Controlled Markov Decision Process (MDP)

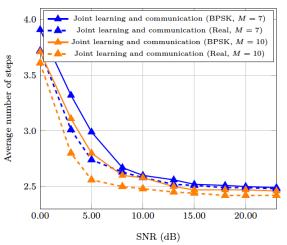


- Createatwo-agentwersionabfanaMDP
- Controller bserves the state and eward, but agent takes the action
- A@noisy@communication@thannel@n@between
- Agentstansdependstolelysonstheseceivedsignal, sorsmayshavesomesimitedsobservations for thesystems tate

Example: Grid World

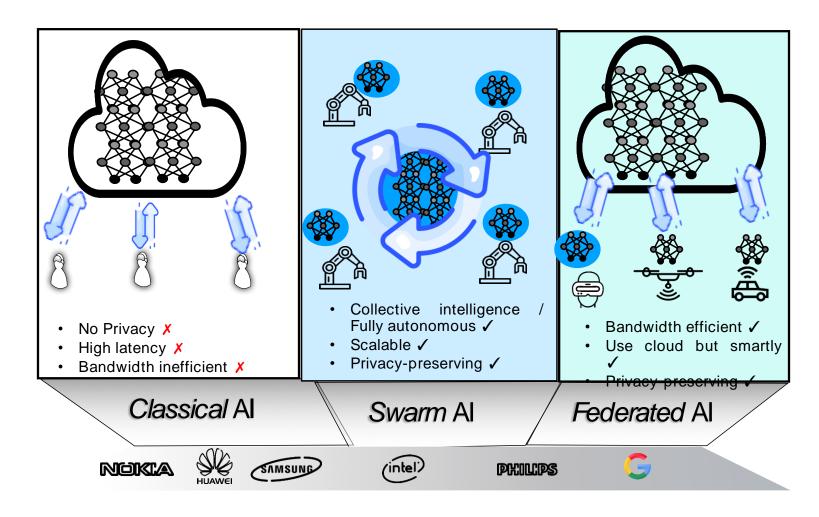
- Lx L grid world
- Agent can take 16 actions (1 or 2 steps in every direction)
- Arrives at a random neighbouring cell w.p. $oldsymbol{\delta}$
- Find treasure at a random location as fast as possible
- Channels:
 - Binary input AWGN channel
 - AWGN channel with average power constraint



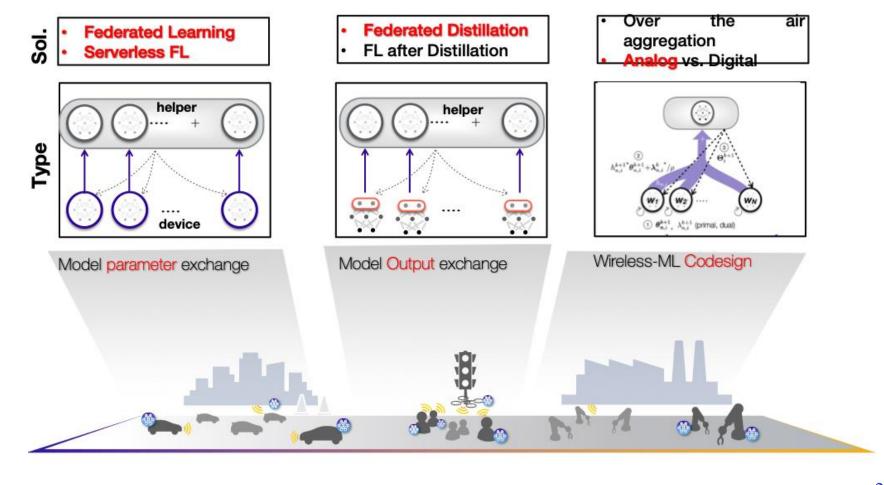


- Extensive expertise in
 - Distributed ML
 - Mobile edge/fog computing
 - URLLC
 - Vehicular communications

Centralized to Federated & Swarm/Distributed ML



Federated Learning



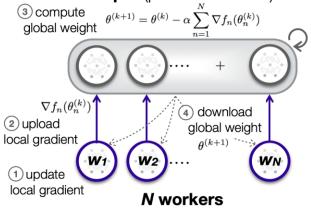
Model Training Beyond Parameter Server

FL (GD based)

Minimize
$$\sum_{n=1}^{N} f_n(\theta_n)$$

s.t. $\theta_n = \theta \quad \forall n$

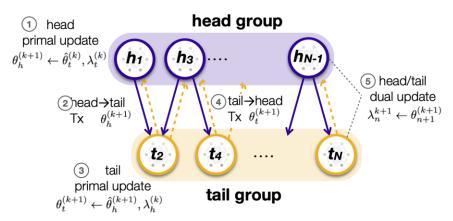
helper (parameter server)



GADMM

Minimize
$$\sum_{n=1}^{N} f_n(\theta_n)$$

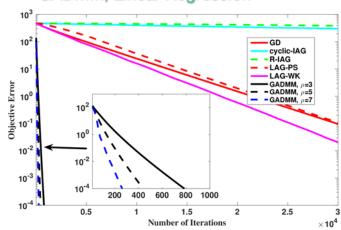
s.t. $\theta_n = \theta_{n+1} \quad \forall n$

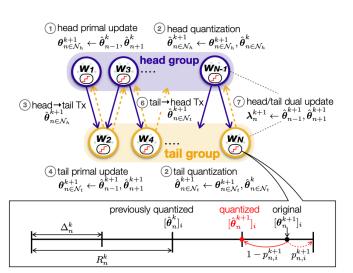


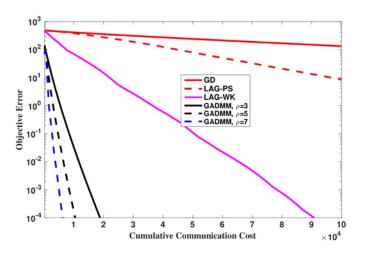
A. Elgabli, J. Park, A. S. Bedi, V. Aggarwal, and M. Bennis, "GADMM: Fast and Communication Efficient Distributed Machine Learning Framework," JMLR20

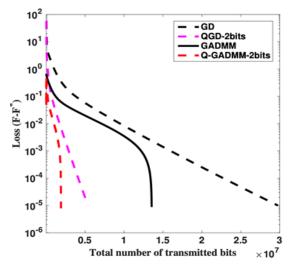
GADMM (full precision) and Quantization

GADMM, Linear Regression

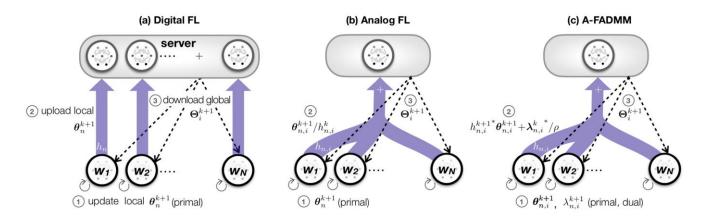


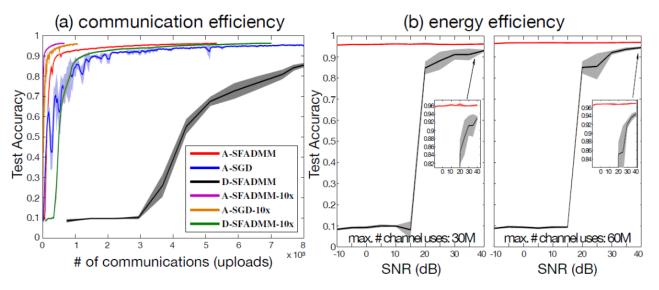






Analog Federated ADMM (A-FADMM)





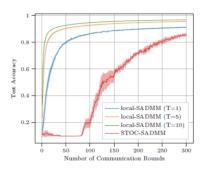
Extension to Non-convex Settings

Goal: To design communication-efficient primal-dual distributed learning algorithm in the **non-convex** setting.

- A set of N workers communicating with a PS to learn a global model
- The learning problem is given by

(P1)
$$\min_{\Theta} \sum_{n=1}^{N} f_n(\Theta) + \beta g(\Theta)$$

- $\Theta \in \mathbb{R}^d$: global model
- f_n: local differentiable and non-convex functions
- g : non-smooth and convex regularization function
- $\beta > 0$: regularization parameter



```
Algorithm 1 Local Stochatic ADMM (Local-SADMM)
 1: Input: N, \rho, T, f_n(\theta_n), \lambda_n^0 = 0, \forall n, \theta_{n,0}^0 = \Theta^0 = 0
 2: for k = 0, 1, 2, \dots, K do
         Each worker n in parallel:
             for t = 0, 1, 2, \dots, T - 1 do
                samples a mini-batch and evaluates g_{n,t}^k.
                updates local model as \theta_{n,t+1}^k = \theta_{n,t}^k - \alpha \left( g_{n,t}^k + \lambda_n^k + \rho(\theta_{n,t}^k - \Theta^k) \right).
             sets \theta_n^{k+1} = \theta_{n,T}^k and sends (\theta_n^{k+1} + \lambda_n^k/\rho) to the PS.
 9:
            \mathbf{solves}\ \Theta^{k+1} = \underset{\Theta}{\mathrm{arg\,min}}\ \{\beta g(\Theta) + \langle \lambda_n^k, \theta_n^{k+1} - \Theta \rangle + \tfrac{\rho}{2} \|\theta_n^{k+1} - \Theta\|_2^2\}.
10:
             sends \Theta^{k+1} to all workers.
11:
         Each worker n in parallel:
12:
            updates \lambda_n^{k+1} locally via \lambda_n^{k+1} = \lambda_n^k + \rho(\theta_n^{k+1} - \Theta^{k+1}).
             sets \theta_{n,0}^{k+1} = \Theta^{k+1}.
15: end for
```

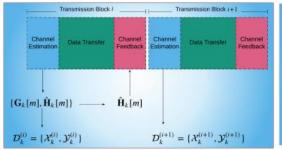
C. Ben Issaid,et al, "Local Stochastic ADMM for Communication-Efficient Distributed Learning." IEEE WCNC 2022

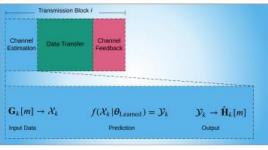
- Extensive expertise in
 - Wireless networking
 - Machine-to-machine communications
 - Sensor networks
 - Vehicular communication networks

FL for Physical Layer Design: Channel Estimation

Training Stage

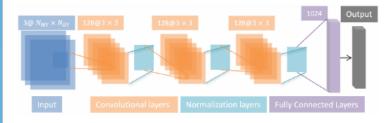
- We need input-label tuples for various channel realizations.
- Each user collects the received pilot data and perform channel estimation via a model-based method.
- Users perform FL with their local datasets.





Prediction Stage

- The trained model is available at the users
- Each user feed the received pilot data to predict its own channel.
- The users can then feedback the channel info to the BS



FL for Physical Layer Design: Channel Estimation

Training RMSE and Prediction NMSE when model parameters are corrupted during FL

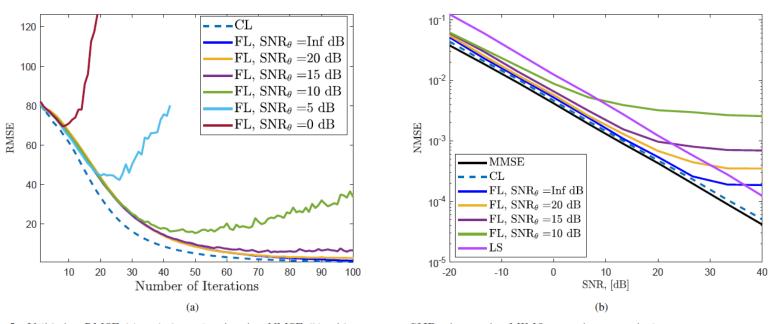


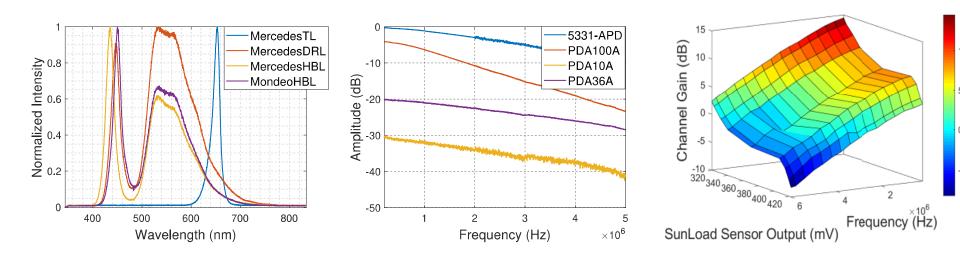
Fig. 5. Validation RMSE (a) and channel estimation NMSE (b) with respect to SNR_{θ} in massive MIMO scenario, respectively.

Heterogeneous architecture

- Communication technologies
 - IEEE 802.11p
 - C-V2X
 - VLC
- Network selection
 - Different network capabilities at different vehicles
 - Changing network topology
 - Sensor readings for network selection (proximity, fog sensors)

•

Channel Modeling



- Machine learning based V2V V-VLC channel modeling
 - Incorporates multi-dimensional channel physical parameters as inputs, free from assumptions and analytical expression limitations
 - Predict channel parameters by learning robust patterns in V-VLC channel data

Path Loss Prediction

Method	RMSE (dB)	R-Square	
Piecewise	7.457	0.8539 0.8538	
Lambertian	1.431		
Exponential Fit	7.459		
Linear Fit	10.220	0.7254	
Two Term Exponential	7.002	0.8712	

Algorithm	Optimal Hyperparameters	RMSE (dB)	MAE (dB)
Random Forest	Number of Estimators (S) 253 , Maximum Depth (T) 710	3.8107	2.4541
MLP-NN	35-10 2 layer network, tansig activation function	3.9502	2.1856
RBF-NN	Spread Factor 0.4, NN Size 551	3.5305	1.8854

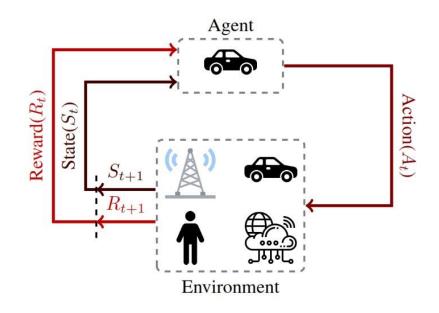
 RBF-NN predicts path loss with the highest accuracy, 3.47 dB better prediction performance than the best fitting two-term exponential model

Heterogeneous Architecture Modeling

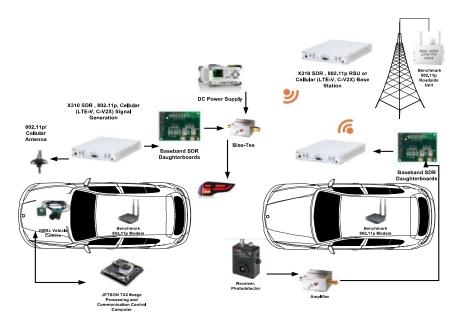
- Propose link quality estimation and jamming detection scheme for IEEE 802.11p and V-VLC
 - Use random forest regression and classifier based algorithms
- Test framework on real-world measurement data
 - 2.34dB and 0.56dB mean absolute error (MAE)
 improvement for V-VLC and IEEE 802.11p, respectively
 - 88.3% accuracy to detect noise interference injection for IEEE 802.11p links

Network Selection in Heterogeneous Architecture

- Reinforcement learning algorithm
- States: Magnitude of vehicle's local update, network availability parameters and SNR
- Actions: Discard, IEEE 802.11p, LTE-V2X, 5G NR, VLC
- Reward: Reliability, delay



Collaborative Work



- Validation of algorithms on moving vehicles
- Joint paper preparation on vehicular cooperative sensing and communication
- Visit of Oulu team at Koc university for a period of 3-months in 2022
- Hybrid transceiver architecture ready
 - VVLC, IEEE 802.11p and C-V2X modems controlled by the same edge computer (EC)

Dissemination

- Published/submitted many papers in high-impact journals
- Gave many invited talks and tutorials
- Provide software codes on project webpage
- Imperial design for novel beam selection algorithm using LIDAR data collected from vehicles won third place in AI/ML in 5G challenge organized by International Telecommunications Union
- Oulu team disseminated results to 6GENESIS project

Contact

- Project webpage: https://connect.ku.edu.tr
- Sinem Coleri: <u>scoleri@ku.edu.tr</u>
- Deniz Gunduz: <u>d.gunduz@imperial.ac.uk</u>
- Mehdi Bennis: mehdi.bennis@oulu.fi