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Why Machine Learning in B5G/6G?

◼ Communication and autonomy are intertwined – ML/AI integral 
component of B5G/6G!

◼ Communication must be self-sustaining – system must operate 
itself by itself: No rigid and human-made protocols!

◼ Communication should be proactive – learn the user, system, 
machines dynamics/preferences, etc (beyond basic caching)!



3

Massive Data

◼ Massive volumes of data will be generated from 

sensors, wearables, surveillance cameras, etc.

◼ How to make sense of this hurricane of chaos?

◼ Analyze, predict, and adapt to the wireless user 

behavior, user-centric wireless (e.g., virtual reality)
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Heterogeneous Sources of Data

Devices

Smartphones
Applications

Geo-location

Mobility patterns

GPS data

People/social

People links

Social networks{
◼ ML to combine to understand needs of wireless users, machines!

Wearables Smart meters

Monitoring

Vehicles

Drones

Surveillance 

camera

Air/water quality 

monitors
Demographics, 

preferences, etc.



• No Privacy ✗
• High latency ✗
• Bandwidth inefficient ✗

• Bandwidth efficient ✓
• Use cloud but smartly ✓
• Privacy-preserving ✓

Centralized ML Federated ML

Centralized → Federated ML



Project Objectives

◼ Develop novel caching, distributed computing and networking
methodologies to enable federated/distributed learning taking
into account network dynamics

◼ Apply developed joint computing, caching and communication
framework to a hierarchical heterogeneous architecture for
vehicular ad-hoc networks
◼ Large-scale simulations

◼ Small scale implementation platform consisting of two cars and a
roadside unit at Koc University
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Work Package 2

◼ WP2. Distributed ML at the Edge: This WP focuses on distributed/
federated ML considering both training and inference at the
network edge, targeting heterogeneous vehicular use cases.
◼ T2.1. Distributed learning at the wireless edge (1-18): This task focuses on

distributed training among moving edge devices taking into account per-device
data sample size, network topology, connectivity, latency and reliability
constraints.

◼ T2.2. Distributed and reliable computing over-the-air (12-36): This task
investigates the fundamental problem of stragglers which can adversely
undermine the learning process.

◼ T2.3. Hierarchical heterogeneous networking architecture for distributed learning
(1-24): This task focuses on the design of smart clustering algorithms (for the
network nodes) and efficient handover mechanisms considering data generation
characteristics and ultra-high reliability and low latency constraints of distributed
ML.
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Work Package 3

◼ WP3. Energy and age-optimal IoT data caching across dynamic
networks: This WP will focus on where, when and how much sensor
data must be stored across a dynamic network under storage and
communication constraints. Particular attention will be paid to the
“age of information” as it will identify the relevance of data for
various learning tasks.
◼ T3.1. Coded caching of data and computations under energy and bandwidth

constraints (6-18): This task focuses on the design of novel coded caching and
delivery techniques focusing on high volume sensor data, mainly targeting
computation tasks, which may benefit from caching computations.

◼ T3.2. Reinforcement learning (RL) for age-optimal caching and delivery of sensor
data across a dynamic network (12 – 36): This task focuses on the design of
distributed collaborative reinforcement learning (RL) algorithms to optimize the
caching of sensor data and offloading of computation tasks.

◼ T3.3. Age-optimal caching and delivery over hierarchical heterogeneous
networks (19– 24): This task will extend the caching and data access framework
for distributed learning and computing developed in Tasks 3.1 and 3.2 to
hierarchical and highly dynamic networks, such as VANETs.
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Work Package 4

◼ WP4. Software platform and testbed implementation: This WP will
focus on building the collaborative software platforms for numerical
simulations as well as the experimental testbed.
◼ T4.1. Software platform for numerical simulation of distributed learning, caching

and networking algorithms (1 – 36): This task will develop the software platform
where all the distributed learning and caching algorithms will be tested.

◼ T4.2. Collection of requirements for caching and computing application (1 – 6):
This task focuses on the collection of communication and data generation
characteristics of distributed computing and caching.

◼ T4.3. Wireless channel characterization for mobile VANETs (7 – 18): This task
focuses on the wireless channel modeling for VLC, IEEE 802.11p and cellular
systems among moving vehicles and road side units under varying scenarios.

◼ T4.4. Designing a hybrid communication architecture for mobile VANETs (19 –
30): This task focuses on the integration of VLC, IEEE 802.11p and cellular
technologies on a hybrid transceiver architecture, targeting learning applications.

◼ T4.5. Validation of vehicular networking for caching and computing applications
(31 –36): This task focuses on the testing and validation of the performance of
the developed algorithms on moving vehicles under various scenarios.
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Imperial Team

◼ Extensive expertise in

◼ Machine learning

◼ Wireless communications

◼ Information and coding theory

◼ Optimization theory

◼ Privacy / Security
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Image Retrieval at the Edge
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Person Re-identification over Noisy 
Channels
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B	=	128	channel	uses		 • CUHK03	dataset:		14096	
images	of	1467	identities	
taken	from	two	camera	
views.	

• 256x128	coloured	images

Jankowski,	Gunduz and	Mikolajczyk,Wireless	image	retrieval	at	the	edge  , IEEE	Journal	on	Selected	Areas	in	Communications	(JSAC),	Jan.	2021.



Neural Networks in the Air (AirNet)
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• Neural	networks	(NNs)	may	need	to	be	transmitted,	or	stored	over	lossy	‘analog’	
media	(neuromorphic	hardware)

• Classification	will	be	done	with	the	noisy	NN

• Conventional	approach:	Compress	NN	weights,	use	channel	coding	against	errors

• Proposed	approach:	Pruning	(for	bandwidth	reduction)	+	noise	injection	during	
training	+	knowledge	distillation

dog/cat

Jankowski, Gündüz, and Mikolajczyk, AirNet: Neural network transmission over the air, arXiv, 2021. 



AirNet over AWGN Channels

14

• Small-VGG16	for	CIFAR-10	classification

• Observation:	Better	to	prune	more,	then	introduce	redundancy	through	
SK	mapping
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Jankowski, Gündüz, and Mikolajczyk, AirNet: Neural network transmission over the air, arXiv, 2021. 



Denoising Noisy Neural Networks
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• w:	neural	network	parameters	

• z:	independent	Gaussian	noise	vector

• No	data	is	available	for	training

• ML	estimate:	

• Bayesian	estimation
• Assume	iid Gaussian	prior	for	network	parameters:

• Sample	mean:

• Sample	variance:

Shao, Liew and Gunduz, Denoising Noisy Neural Networks: A Bayesian Approach with Compensation, arXiv, May 2021.

dog/cat



Denoising Noisy Neural Networks
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Remote-Controlled Markov Decision 
Process (MDP)
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• Create	a	two-agent	version	of	an	MDP

• Controller	observes	the	state	and	reward,	but	agent	takes	the	action

• A	noisy	communication	channel	in	between

• Agent	can	depend	solely	on	the	received	signal,	or	may	have	some	limited	observation	of	
the	system	state

Remote-Controlled Markov Decision 

Process (MDP)

Tung,	Kobus,	Roig Pujol,	Gunduz,	Effective	Communications:	A	Joint	Learning	and	Communication	Framework	for	Multi-Agent	Reinforcement	Learning	over	Noisy	Channels,	IEEE	JSAC,	2021.



Example: Grid World
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Oulu Team

◼ Extensive expertise in 

◼ Distributed ML

◼ Mobile edge/fog computing

◼ URLLC 

◼ Vehicular communications
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Centralized to Federated & 
Swarm/Distributed ML
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• No Privacy✗
• High latency✗
• Bandwidth inefficient ✗

• Collective intelligence /
Fully autonomous✓

• Scalable✓
• Privacy-preserving ✓

• Bandwidth efficient ✓
• Use cloud but smartly
✓

• Privacy-preserving ✓

Classical AI Swarm AI Federated AI

Centralized à Federated & Swarm/Distributed ML



Federated Learning
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Model Training Beyond Parameter Server
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GADMM (full precision) and Quantization
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GADMM (full precision)

GADMM, Linear Regression

Quantization

GADMM (full precision)

GADMM, Linear Regression

Quantization



Analog Federated ADMM (A-FADMM)
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Analog Federated ADMM (A-FADMM)

A. Elgabli, J. Park, C. Issaid, and M. Bennis, “Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated Learning,” IEEE TCOM 2021

Analog-FADMM



Extension to Non-convex Settings
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Extensions to non-convex settings

Goal: To design communication-efficient primal-dual distributed learning algorithm in the non-convex

setting.

C. Ben Issaid,et al, “Local Stochastic ADMM for Communication-Efficient Distributed Learning.” IEEE WCNC 2022



Koc Team

◼ Extensive expertise in

◼ Wireless networking

◼ Machine-to-machine communications

◼ Sensor networks

◼ Vehicular communication networks

26
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FL for Physical Layer Design: 

Channel Estimation

A. M. Elbir and S. Coleri, "Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO", accepted to IEEE 

Transactions on Wireless Communications.

Training Stage
• We need input-label tuples for

various channel realizations.
• Each user collects the received pilot 

data and perform channel
estimation via a model-based
method.

• Users perform FL with their local
datasets.

Prediction Stage
• The trained model is available

at the users
• Each user feed the received

pilot data to predict its own
channel.

• The users can then feedback
the channel info to the BS
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FL for Physical Layer Design: 

Channel Estimation

Training RMSE and Prediction NMSE
when model parameters are corrupted during FL



◼ Communication technologies
◼ IEEE 802.11p 

◼ C-V2X  

◼ VLC

◼ Network selection
◼ Different network capabilities at different vehicles

◼ Changing network topology

◼ Sensor readings for network selection (proximity, fog sensors)
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Heterogeneous architecture



Channel Modeling

◼ Machine learning based V2V V-VLC channel modeling

◼ Incorporates multi-dimensional channel physical parameters as inputs, free 
from assumptions and analytical expression limitations

◼ Predict channel parameters by learning robust patterns in V-VLC channel data 
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B. Turan and S. Coleri, ”Machine Learning based Channel Modeling for Vehicular Visible Light Communication", IEEE Transactions on Vehicular

Technology, 2021.



Path Loss Prediction

◼ RBF-NN predicts path loss with the highest accuracy, 3.47 dB 
better prediction performance than the best fitting two-term 
exponential model
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Heterogeneous Architecture Modeling

◼ Propose link quality estimation and jamming 
detection scheme for IEEE 802.11p and V-VLC

◼ Use random forest regression and classifier based 
algorithms 

◼ Test framework on real-world measurement data 

◼ 2.34dB and 0.56dB mean absolute error (MAE) 
improvement for V-VLC and IEEE 802.11p, respectively

◼ 88.3% accuracy to detect noise interference injection for 
IEEE 802.11p links
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B. Turan, A. Uyrus, O. N. Koc, E. Kar and S. Coleri, ”Machine Learning Aided Path Loss Estimation and Radio Jamming Detection for 

Heterogeneous Vehicular Communications”, IEEE GLOBECOM 2021.



◼ Reinforcement learning 
algorithm

◼ States: Magnitude of 
vehicle’s local update, 
network availability 
parameters and SNR

◼ Actions: Discard, IEEE 
802.11p, LTE-V2X, 5G NR, 
VLC

◼ Reward:  Reliability, delay
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Network Selection in Heterogeneous 

Architecture



Collaborative Work

◼ Validation of algorithms on moving vehicles

◼ Joint paper preparation on vehicular cooperative sensing and communication 

◼ Visit of Oulu team at Koc university for a period of 3-months in 2022

◼ Hybrid transceiver architecture ready

◼ VVLC, IEEE 802.11p and C-V2X modems controlled by the same edge computer 
(EC) 34



Dissemination

◼ Published/submitted many papers in high-impact journals

◼ Gave many invited talks and tutorials

◼ Provide software codes on project webpage

◼ Imperial design for novel beam selection algorithm using LIDAR 
data collected from vehicles won third place in AI/ML in 5G 
challenge organized by International Telecommunications 
Union

◼ Oulu team disseminated results to 6GENESIS project
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Contact

◼ Project webpage: https://connect.ku.edu.tr

◼ Sinem Coleri: scoleri@ku.edu.tr

◼ Deniz Gunduz: d.gunduz@imperial.ac.uk

◼ Mehdi Bennis: mehdi.bennis@oulu.fi
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