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i Why Machine Learning in B5G/6G?

= Communication and autonomy are intertwined — ML/AIl integral
component of B5G/6G!

.  Communication must be self-sustaining — system must operate
itself by itself: No rigid and human-made protocols!

=  Communication should be proactive — learn the user, system,
machines dynamics/preferences, etc (beyond basic caching)!



Massive Data

= Massive volumes of data will be generated from
sensors, wearables, surveillance cameras, etc.

m How to make sense of this hurricane of chaos?

= Analyze, predict, and adapt to the wireless user
behavior, user-centric wireless (e.g., virtual reality)




Heterogeneous Sources of Data
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s ML to combine to understand needs of wireless users, machines!
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:L Centralized > Federated ML
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Project Objectives

m Develop novel caching, distributed computing and networking
methodologies to enable federated/distributed learning taking
into account network dynamics

s Apply developed joint computing, caching and communication
framework to a hierarchical heterogeneous architecture for
vehicular ad-hoc networks

= Large-scale simulations

= Small scale implementation platform consisting of two cars and a
roadside unit at Koc University



i Work Package 2

= WP2. Distributed ML at the Edge: This WP focuses on distributed/
federated ML considering both training and inference at the
network edge, targeting heterogeneous vehicular use cases.

72.1. Distributed learning at the wireless edge (1-18): This task focuses on
distributed training among moving edge devices taking into account per-device
data sample size, network topology, connectivity, latency and reliability
constraints.

72.2. Distributed and reliable computing over-the-air (12-36): This task
investigates the fundamental problem of stragglers which can adversely
undermine the learning process.

72.3. Hierarchical heterogeneous networking architecture for distributed learning
(1-24): This task focuses on the design of smart clustering algorithms (for the
network nodes) and efficient handover mechanisms considering data generation
characteristics and ultra-high reliability and low latency constraints of distributed
ML.



i Work Package 3

= WP3. Energy and age-optimal IoT data caching across dynamic
networks: This WP will focus on where, when and how much sensor
data must be stored across a dynamic network under storage and
communication constraints. Particular attention will be paid to the
“age of information” as it will identify the relevance of data for
various learning tasks.

» 73.1. Coded caching of data and computations under energy and bandwidth
constraints (6-18): This task focuses on the design of novel coded caching and
delivery techniques focusing on high volume sensor data, mainly targeting
computation tasks, which may benefit from caching computations.

» 713.2. Reinforcement learning (RL) for age-optimal caching and delivery of sensor
data across a dynamic network (12 — 36): This task focuses on the design of
distributed collaborative reinforcement learning (RL) algorithms to optimize the
caching of sensor data and offloading of computation tasks.

» 73.3. Age-optimal caching and delivery over hierarchical heterogeneous
networks (19— 24): This task will extend the caching and data access framework
for distributed learning and computing developed in Tasks 3.1 and 3.2 to
hierarchical and highly dynamic networks, such as VANETS.



i Work Package 4

= WP4. Software platform and testbed implementation: This WP wiill
focus on building the collaborative software platforms for numerical
simulations as well as the experimental testbed.

74.1. Software platform for numerical simulation of distributed learning, caching
and networking algorithms (1 — 36): This task will develop the software platform
where all the distributed learning and caching algorithms will be tested.

74.2. Collection of requirements for caching and computing application (1 — 6):
This task focuses on the collection of communication and data generation
characteristics of distributed computing and caching.

74.3. Wireless channel characterization for mobile VANETs (7 — 18): This task
focuses on the wireless channel modeling for VLC, IEEE 802.11p and cellular
systems among moving vehicles and road side units under varying scenarios.

74.4. Designing a hybrid communication architecture for mobile VANETs (19 —
30): This task focuses on the integration of VLC, IEEE 802.11p and cellular
technologies on a hybrid transceiver architecture, targeting learning applications.

74.5. Validation of vehicular networking for caching and computing applications
(31 —36): This task focuses on the testing and validation of the performance of
the developed algorithms on moving vehicles under various scenarios.



Imperial Team

m Extensive expertise in

Machine learning

Wireless communications
Information and coding theory
Optimization theory

Privacy / Security
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Image Retrieval at the Edge

Goal: match a pedestrian’s image from a wireless camera with another image in a

large database

Standard approach:

- Transmit images to the cloud

- Determine features most relevant for re-
identification over image database

- Re-ID baseline: Deep convolutional neural
network, e.g., ResNet-50

Jankowski, Gunduz and Mikolajczyk, Wireless image retrieval at the edge, /EEE Journal on Selected Areas in Communications (JSAC), Jan. 2021.
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Person Re-identification over Noisy
Channels
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Neural Networks in the Air (AirNet)
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Jankowski, Giindiiz, and Mikolajczyk, AirNet: Neural network transmission over the air, arXiv, 2021.
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AirNet over AWGN Channels
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Denoising Noisy Neural Networks

r=w-+z . ((A))
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Shao, Liew and Gunduz, Denoising Noisy Neural Networks: A Bayesian Approach with Compensation, arXiv, May 2021.
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Denoising Noisy Neural Networks

~ @ ©
o (=] (=]

@
o

Test accuracy

[N} w
o o

3

70 4

Test accuracy

w
(=]

20

RestNet34 (CIFAR-10)

o
(=]

&
(=]

33%

-10.0 -95 -9.0 -85 -8.0 =75 =70 -6.5 -6.0
SNR (dB)

ShuffleNet V2 (CIFAR-10)

o
(=]

&
(=]

-40 -35 -30 -25 -20 ~-15 -10 -05 00
SNR (dB)

Test accuracy
n w £y w [=2] ~ @ o
S =3 S S S =) S S

3

0.85 4

0.80

0.75

Test accuracy
o o o
o @ ~
@ =] (=3

b
o
(=]

RestNet18 (CIFAR-10)

Il
@
@

18%
85%
— ML
—— MMSEps
80 -75 -70 -65 60 -55 -50 -45 -40
SNR (dB)
9.9%
— ML
— MMSEp,
800 825 850 875 9.00 925 950 975 10.00

SNR (dB)

16



Remote-Controlled Markov Decision
Process (MDP)

Environment
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Example: Grid World
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Tung, Kobus, Roig Pujol, Gunduz, Effective Communications: A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning over Noisy Channels, IEEE JSAC, 2021.
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Oulu Team

m Extensive expertise in
= Distributed ML
= Mobile edge/fog computing
= URLLC
= Vehicular communications
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Centralized to Federated &
Swarm/Distributed ML
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Federated Learning

* Federated Learning
« Serveriess FL
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Model Training Beyond Parameter Server

L (GD based)
N
Minimize ;fn(en)
st. #8,=60 Vn

helper (parameter server)
COMPUtE k1) _ (k) _ "‘Z V1. (60)

global weight —
V(05 #1 (@ download
(2) upload global weight
local gradient Qlk+1) i
(1) update
local gradient
9 N workers

A. Elgabli, J. Park, A. S. Bedi, V. Aggarwal, and M. Bennis, “GADMM:

pnmal update
k) A(k
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Fast and Communication Efficient Distributed Machine Learning Framework,” JMLR20
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GADMM (full precision) and Quantization

GADMM, Linear Regression
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Analog Federated ADMM (A-FADMM)

(a) Digital FL (b) Analog FL (c) A-FADMM
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A. Elgabli, J. Park, C. Issaid, and M. Bennis, “Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated Learning,” IEEE TCOM 2021 24



Extension to Non-convex Settings

Goal: To design communication-efficient primal-dual distributed learning algorithm in the non-convex

setting.

e A set of N workers communicating with
a PS to learn a global model

¢ The learning problem is given by

N
(P1) méann(@) + g (©)

n=1

© < R?: global model
f, : local differentiable and non-convex

functions

. g :

non-smooth and convex

regularization function

« 3 >0 : regularization parameter
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Test Accuracy

0.4+

local-SADMM (T = 1)
local-SADMM (T = 5)
—— local-SADMM (T = 10)
—— STOC-SADMM

C. Ben Issaid,et al, “Local Stochastic ADMM for Communication-Efficient Distributed Learning.” IEEE WCNC 2022
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Algorithm 1 Local Stochatic ADMM (Local-SADMM)
Input: N,p. T, fu(0,), A =0,Vn, 6%, =0"=0

1:
2: for k=0,1,2,--- ,K do

3 Each worker n in parallel:
1 fort=0,1,2,---,T-1do
5

samples a mini-batch and evaluates g ,.

6: updates local model as 0% ., = 0% , —a (gk , + Ak + p(0% , — ©%)).
T end for
8: sets 05+1 = g% . and sends (05+! + A% /p) to the PS.
9 PS:
10: solves ©%7! = argmin {3g(0©) + (AL, 05+ — @) + !:,‘|\Hﬁ-] - 0|13}
e
1: sends ©**! to all workers.
122 Each worker 7 in parallel:
13: updates A1 locally via A1 = MK 4 p(gk+1 — ©F+1),
14: sets 05t = @ +1,

n,0
15: end for
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Koc Team

s Extensive expertise in

Wireless networking
Machine-to-machine communications
Sensor networks

Vehicular communication networks
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FL for Physical Layer Design:
Channel Estimation

Training Stage Prediction Stage
* We need input-label tuples for * The trained model is available
various channel realizations. at the users
* Each user collects the received pilot e FEach user feed the received
data and perform channel pilot data to predict its own
estimation via a model-based channel.
method. * The users can then feedback
* Users perform FL with their local the channel info to the BS

datasets.

Output

[ outsut
e
BS %k

D}:'“ = lxzm)'ygfl%'

A. M. Elbir and S. Coleri, "Federated Learning for Channel Estimation in Conventional and IRS-Assisted Massive MIMO", accepted to IEEE
Transactions on Wireless Communications.
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FL for Physical Layer Design:
Channel Estimation

Training RMSE and Prediction NMSE
when model parameters are corrupted during FL
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FL,
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SNRy =Inf dB

SNRy =20 dB ||
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SNRy =0 dB

RMSE
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— MMSE
= ==CL

104 F FL, SNRy =20 dB
——FL, SNRy =15 dB
e FT,, SNRy =10 dB

=T, SNRy =Inf dB
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Number of Iterations

(a)

—LS
1 0_5 1 1 1 1 1
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(b)

Fig. 5. Validation RMSE (a) and channel estimation NMSE (b) with respect to SNRg in massive MIMO scenario, respectively.
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Heterogeneous architecture

=  Communication technologies
= |EEE 802.11p
= C-V2X
= VLC

= Network selection
= Different network capabilities at different vehicles
= Changing network topology
= Sensor readings for network selection (proximity, fog sensors)
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Channel Modeling
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= Machine learning based V2V V-VLC channel modeling

= Incorporates multi-dimensional channel physical parameters as inputs, free
from assumptions and analytical expression limitations

= Predict channel parameters by learning robust patterns in V-VLC channel data

B. Turan and S. Coleri, "Machine Learning based Channel Modeling for Vehicular Visible Light Communication”, IEEE Transactions on Vehicular
Technology, 2021. 30



Path Loss Prediction

Method RMSE (dB) | R-Square
Piecewise

Lambertian 7.457 0.8539

Exponential Fit 7.459 0.8538

Linear Fit 10.220 0.7254

Two Term Exponential 7.002 0.8712

Algorithm Optimal Hyperparameters RMSE (dB) MAE (dB)

Random Forest Number of Estimators (S) 253 , Maximum Depth (T) 710 3.8107 2.4541
MLP-NN 35-10 2 layer network, tansig activation function 3.9502 2.1856
RBF-NN Spread Factor 0.4, NN Size 551 3.5305 1.8854

s RBF-NN predicts path loss with the highest accuracy, 3.47 dB
better prediction performance than the best fitting two-term
exponential model



Heterogeneous Architecture Modeling

m Propose link quality estimation and jamming
detection scheme for IEEE 802.11p and V-VLC

= Use random forest regression and classifier based
algorithms

m Test framework on real-world measurement data

= 2.34dB and 0.56dB mean absolute error (MAE)
improvement for V-VLC and IEEE 802.11p, respectively

= 88.3% accuracy to detect noise interference injection for
IEEE 802.11p links

B. Turan, A. Uyrus, O. N. Koc, E. Kar and S. Coleri, “Machine Learning Aided Path Loss Estimation and Radio Jamming Detection for
Heterogeneous Vehicular Communications”, I[EEE GLOBECOM 2021. 32



Network Selection in Heterogeneous

Architecture

Reinforcement learning
algorithm

States: Magnitude of
vehicle’s local update,
network availability
parameters and SNR

Actions: Discard, |IEEE
802.11p, LTE-V2X, 5G NR,
VLC

Reward: Reliability, delay

Reward(R;)

Agent
.
I —————————
95
X |
8
i

Environment

(" )uonoy

33



Collaborative Work

Validation of algorithms on moving vehicles

Joint paper preparation on vehicular cooperative sensing and communication

Visit of Oulu team at Koc university for a period of 3-months in 2022
Hybrid transceiver architecture ready

VVLC, IEEE 802.11p and C-V2X modems controlled by the same edge computer
(EC)
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Dissemination

Published/submitted many papers in high-impact journals
Gave many invited talks and tutorials

Provide software codes on project webpage

Imperial design for novel beam selection algorithm using LIDAR
data collected from vehicles won third place in AI/ML in 5G
challenge organized by International Telecommunications
Union

Oulu team disseminated results to 6GENESIS project
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Contact

Project webpage: https://connect.ku.edu.tr

Sinem Coleri: scoleri@ku.edu.tr

Deniz Gunduz: d.cunduz@imperial.ac.uk

Mehdi Bennis: mehdi.bennis@oulu.fi
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