
Projects Seminar
2018

Year 2 of Interactive Grounded Language Understanding
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Summary

What was done during the second year of the IGLU project:
I Beginning of the integration of developed algorithms on multiple robotic platforms (e.g. IRL-1, Baxter).
I Study of the effects of grounding in multimodal neural machine translation.
I Speech-related processing in terms of source separation and visual detection of the active speaker.
I Generative modeling for language learning using probabilistic frameworks.
I Goal-oriented visual and dialogue tasks for language learning and grounding.
I Evaluation framework for grounded language understanding in cognitive agents.

Evaluation of Language Learning Agents

Figure: HoME: a Household Multimodal Environment

Research aims:
I Objective evaluation of the grounding abilities of artificial agents.
I Use goal-oriented dialogue games to learn language and ground it in multimodal perception.
I Realistic and complex environments, yet controllable and reproducible research.

Language Learning with Goal-oriented Visual Tasks
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Figure: Situated dialogue on HoME Figure 3: The FiLM generator (left), FiLM-ed network (mid-
dle), and residual block architecture (right) of our model.

early stopping based on validation set accuracy, training for
a maximum of 80 epochs. Further model details are in the
appendix.

We stress that our model relies solely on feature-wise
affine conditioning to use question information influence the
visual pipeline behavior to answer questions. This approach
differs from classical visual question answering pipelines
which fuse image and language information into a single
embedding via element-wise product, concatenation, atten-
tion, and/or more advanced methods (Yang et al. 2016;
Lu et al. 2016; Anderson et al. 2017).

3 Related Work
FiLM can be viewed as a generalization of Conditional Nor-
malization (CN) methods. CN replaces the parameters of the
feature-wise affine transformation typical in normalization
layers, as introduced originally (Ioffe and Szegedy 2015),
with a learned function of some conditioning information.
Various forms of CN have proven highly effective across a
number of domains: Conditional Instance Norm (Dumoulin,
Shlens, and Kudlur 2017; Ghiasi et al. 2017) and Adaptive
Instance Norm (Huang and Belongie 2017) for image styl-
ization, Dynamic Layer Norm for speech recognition (Kim,
Song, and Bengio 2017), and Conditional Batch Norm for
general visual question answering on complex scenes such
as VQA and GuessWhat?! (de Vries et al. 2017). This work
complements our own, as we seek to show that feature-wise
affine conditioning is effective for multi-step reasoning and
understand the underlying mechanism behind its success.

Notably, prior work in CN has not examined whether
the affine transformation must be placed directly after nor-
malization. Rather, prior work includes normalization in the
method name for instructive purposes or due to application-
specific implementation details. We investigate the relation-
ship between FiLM and normalization and find that it is not

strictly necessary for the affine transformation to be placed
directly after normalization. Thus, we provide a unified
framework for all of these methods through FiLM, as well as
a normalization-free relaxation of this approach which can
be more broadly applied.

Beyond CN, there are many connections between FiLM
and other conditioning methods. A common approach, used
for example in Conditional DCGANs (Radford, Metz, and
Chintala 2016), is to concatenate constant feature maps
of conditioning information with convolutional layer input.
This method, though not as parameter efficient, amounts to
simply adding a post-layer, feature-wise conditional bias.
Likewise, concatenating conditioning information with a
fully-connected layer input amounts to a feature-wise con-
ditional bias. Other approaches such as Conditional Pixel-
CNN (van den Oord et al. 2016b) and WaveNet (van den
Oord et al. 2016a) directly add a conditional feature-wise
bias. These approaches are equivalent to FiLM with γ = 1,
which we compare FiLM to in the Experiments section.

Other methods gate an input’s features as a function of
that same input, rather than a separate conditioning in-
put. These methods include LSTMs for sequence model-
ing (Hochreiter and Schmidhuber 1997), Convolutional Se-
quence to Sequence for machine translation (Gehring et al.
2017), and even the ImageNet 2017 winning model, Squeeze
and Excitation Networks (Hu, Shen, and Sun 2017). This
approach amounts to a feature-wise, conditional scaling, re-
stricted to between 0 and 1, while FiLM consists of both
scaling and shifting, each unrestricted. In the Experiments
section, we show the effect of restricting FiLM’s scaling to
between 0 and 1 for visual reasoning. We find it noteworthy
that this general approach of feature modulation is effective
across a variety of settings and architectures.

There are even broader links between FiLM and other
methods. For example, FiLM can be viewed as using one
network to generate parameters of another network, mak-
ing it a form of hypernetwork (Ha, Dai, and Le 2016). Also,
FiLM has potential ties with conditional computation and
mixture of experts methods, where specialized network sub-
parts are active on a per-example basis (Jordan and Jacobs
1994; Eigen, Ranzato, and Sutskever 2014; Shazeer et al.
2017); we later provide evidence that FiLM learns to selec-
tively highlight or suppress feature maps based on condi-
tioning information. Those methods select at a sub-network
level while FiLM selects at a feature map level.

In the domain of visual reasoning, one leading method is
the Program Generator + Execution Engine model (John-
son et al. 2017b). This approach consists of a sequence-
to-sequence Program Generator, which takes in a question
and outputs a sequence corresponding to a tree of compos-
able neural modules, each of which is a two or three layer
residual block. This tree of neural modules is assembled to
form the Execution Engine that then predicts an answer from
the image. This modular approach is part of a line of neu-
ral module network methods (Andreas et al. 2016a; 2016b;
Hu et al. 2017), of which End-to-End Module Networks (Hu
et al. 2017) have also been tested on visual reasoning. These
models use strong priors by explicitly modeling the compo-
sitional nature of reasoning and by training with additional

Figure: Visual question answering on CLEVR

Research aims:
I Situated dialogue and visual question answering that require effective language and vision integration.
I General reasoning over visual scenes with attention mechanisms (CBN and FiLM).

Generative Modeling for Language Learning

Figure: Learning of gestures, language and affordances Figure: Event-based generative modeling

Research aims:
I Probabilistic frameworks for cognitive agents, with reasoning by building internal model of the environment.
I Joint learning of robot affordances and word descriptions with statistical recognition of human gestures.
I Multimodal event-based representations and probabilistic generative modeling of robot sensory data.

Integration on Robotic Platforms

Figure: Object model learning from human-robot interactions

Research aims:
I Develop an API for robot incremental learning that supports multiple robotic platforms.
I Build a partially annotated dataset for object modeling from natural human-robot interactions.
I Acquire object models from interaction data (point, show and speak) using an end-to-end pipeline.
I Perform knowledge transfer from simulation to real robots using generative models.

Multimodal Neural Machine Translation

Figure: Translation with attentional mechanism for sentence
“Einkleiner schwarzer Hund springt über Hindernisse”.

Research aims:
I Solve ambiguities in machine translation by

providing the visual context.
I Develop better attentional mechanisms (CBP and

CBN) to find objects in the image.
I Improve visual and word representations

(DenseCap and Glove). Figure: Multimodal translation task

Speech Enhancement and Processing

Figure: Active speaker detection Figure: GCC-NMF source separation

Research aims:
I Automatic visual detection of the active speaker in multiparty interactions.
I Real-time source separation system with GCC-NMF, running on embedded systems.
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