Interactive Grounded Language Understanding (IGLU)

Overview of this new CHISTERA project

Jean Rouat, Simon Brodeur, Univ. de Sherbrooke, Québec, Canada

Consortium partners

▼ Who is contributing to the project?

Contributors

The IGLU consortium is composed of 8 research teams, across 6 different countries. The project is a total effort of 325 person-months (PM).

Experts

- Deep learning A. Courville
- ► Reinforcement learning O. Pietquin, B. Piot
- ▶ Neurosciences and cognitive sciences J. Rouat, R. K. Moore
- Robotics M. Lopes, A. C. Murillo, J. Civera
- Signal processing (audition, vision) J. Rouat, S. Dupont, G. Salvi
- Human-machine interaction S. Dupont
- **11 Ph.D students (5 in Québec)**
- **Management: Students & Experts**

Unified Architecture

Context of a situated/embodied agent interacting with a human physically and through

Objectives of the project

▼ First objective: contribute to HLU by conducting research in the following topics, so as to unify the respective contributions made to these topics into a single architecture:

- Semantic knowledge acquisition, modelling and grounding.
- Pragmatic knowledge acquisition through interaction and modelling.
- Decision-making based on reinforcement learning able to tackle semantic and pragmatic knowledge representations.

Objectives of the project

■ Second objective: evaluate the architecture in the context of human-agent interaction, aiming for human language acquisition and understanding:

- Reproducible experiments will be made possible by the creation of database suitable for this task.
- Research results will be published in relevant publications, conferences and videos.
- Dissemination of the tools and data generated as part of the project will be open to the scientific community.

Potential Impacts (I)

▼ Scientific impacts on machine learning and knowledge representation

- Move toward interaction and cooperation with situated agent, where temporal aspect is important.
- Deep learning on spatio-temporal multimodal data could be the next leap leading to even more success in complex problems.
- Data and semantic knowledge collected from the project could be contributed and merged with RoboBrain.

▼ Scientific impacts on neuroscience and cognitive science

- Emerging trend in neurosciences to consider the brain as a hierarchical generative model of the world.
- Insight about the significance and impact of using semantic simulation in the context of human-agent interaction.
- New highlights and contribution to the parallel scientific debate of connectionism versus symbolism for cognition.

Potential Impacts (II)

▼ Long-term societal impacts

- Bring robotic agents in closer cooperation on daily physical tasks by having good interpretation and communication skills, as well as extensible knowledge.
- Computer interacting with human (and learning by doing so) would be the next leap toward artificial intelligence.
- Intelligent robotic agents of the future would adapt naturally to the user, based on the (perceived and simulated) experience of the user.

Ongoing Work

▼ We study metrics to be used for evaluation along the project

- The impacts of grounded/not grounded and intereaction/no interaction;
- The impact of HLU on the human-agent interaction;
- The adaptation of the agent to new situations;
- The anticipation abilities of the agent;
- The assimilation of new knowledge by the agent.

▼ Implementation

- **▼** We study scenarios,
- Will soon proceed to data acquisition
- Are completing the roadmap while research is beginning with teams attached wo WPs

End of presentation

Summary of the project

▼ Interaction examples for evaluation:

Human: "This is milk and this is a bowl. Pour the milk into the bowl." (Human is showing the milk and the bowl first and then pours the milk) ...

Agent: "How do I pour the milk into the bowl?" (Resolve ambiguity about action)

Human: "Like this." (Imitation learning)

Agent: "Got it."

Human: "Now add an egg."

Agent: "What is an egg?" (Resolve ambiguity about object)

Human: "This" (Human is showing the egg – the agent is learning the new word "egg"

along with its visual representation)

... (dialogue continues) ...

Human: "Let's cook this!." (Human is showing some eggs and a frying pan)

Agent: "You want to fry eggs? Let's do it."

Summary of the project

▼ Grounded knowledge acquisition

- Acquisition of such perceptually-grounded knowledge in virtual (avatar) and embodied (robotic) agents.
- Driven by multimodal experience and language interaction with a human.
- Handle large-scale multimodal inputs.

■ Interaction-driven learning

- Pragmatic knowledge (identifying or conveying intention) must be present to complement semantic knowledge.
- Developmental approach where knowledge grows in complexity while driven by multimodal experience and language interaction.

Summary of the project

Decision-making

- Models of dialogues, human emotions and intentions as part of the decision-making process.
- Anticipation and reaction not only based on its internal state (own goal and intention, perception of the environment), but also on the perceived state and intention of the human interactant.

Research method of the project

▼ Semantic Knowledge Modelling, Acquisition and Grounding

- Online learning of the semantics of new multimodal objects, and update of the semantic knowledge base for new vocabulary items.
- Linking objects with their perceptual properties, modelling relations between objects (e.g. IS-A, CAN relations), and modelling action and affordance at the conceptual level.
- Multimodal feature extraction through deep learning methods for the sensory pathway.
- Automatic speech recognition and natural language processing for the dialogue pathway, to provide symbolic information.
- Regenerate the perceptual representations related to stored concepts.
- Offline learning to build prior knowledge from available databases and ontologie (e.g. WordNet, ImageNet).

Research method of the project

- **▼ Pragmatic Knowledge Acquisition through Interaction and Modelling**
 - Scene description to provide hints on the topic of the dialogue and interaction.
 - Human action and affordance from scene understanding and dialogue interactions.
 - Human emotion from visual and acoustic cues.
 - Human semantic simulation as a prediction of human intentions and behaviors.

Research method of the project

▼ Decision-making based on Reinforcement Learning

- ▼ Central executive to integrate many high-level functions in managing the dialogue and actions.
- ▶ Perform inference (action selection), accessing the knowledge bases as needed.
- Reinforcement learning to select the optimal actions based on the belief state and what must be inferred through the semantic and pragmatic knowledge bases.
- ▶ Physical interactions to use motion planning and execution to achieve complex manipulation tasks.
- Verbal interactions to use natural language generation and text-tospeech synthesis tools.